-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Biomedical Informatics and Smart Healthcare
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Biomedical Informatics and Smart Healthcare, Volume 1, Issue 1, 2025: 9-17

Open Access | Research Article | 02 June 2025
Optimizing ICU Resource Allocation During the COVID-19 Crisis: An AI-Driven Approach
1 LaRTiD Laboratory, Higher School of Technology, Cadi Ayyad University, Marrakesh 40000, Morocco
2 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
3 Faculty of Sciences and Technics, Moulay Ismail University, Meknes BP 298, Morocco
* Corresponding Author: Azidine Guezzaz, [email protected]
Received: 02 April 2025, Accepted: 10 May 2025, Published: 02 June 2025  
Abstract
The COVID-19 pandemic exerted immense pressure on healthcare systems globally, including in Morocco, where the demand for intensive care unit (ICU) beds frequently surpassed available capacity—at times doubling it. This crisis underscored the critical need for accurate prediction of ICU length of stay (LOS) to optimize resource allocation, enhance patient care, and reduce healthcare costs. This study aims to leverage artificial intelligence (AI) to predict and optimize ICU resource allocation during the COVID-19 crisis, ensuring efficient patient triage and resource management. By integrating Random Forest (RF) and Deep Neural Networks (DNN), the research demonstrates improved accuracy in predicting patient LOS, thereby facilitating better resource management and patient care optimization. Furthermore, the study emphasizes the necessity for AI models to be interpretable and user-friendly to ensure successful adoption by healthcare professionals.

Graphical Abstract
Optimizing ICU Resource Allocation During the COVID-19 Crisis: An AI-Driven Approach

Keywords
machine learning
deep learning
ICU
patient care
prediction
decision making

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3(1), 1-9.
    [CrossRef]   [Google Scholar]
  2. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ digital medicine, 1(1), 18.
    [CrossRef]   [Google Scholar]
  3. Azrour, M., Mabrouki, J., Guezzaz, A., Ahmad, S., Khan, S., & Benkirane, S. (Eds.). (2024). IoT, machine learning and data analytics for smart healthcare. CRC Press.
    [CrossRef]   [Google Scholar]
  4. Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?. BMJ global health, 3(4), e000798.
    [CrossRef]   [Google Scholar]
  5. Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.
    [CrossRef]   [Google Scholar]
  6. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4).
    [CrossRef]   [Google Scholar]
  7. Yue, L., Tian, D., Chen, W., Han, X., & Yin, M. (2020). Deep learning for heterogeneous medical data analysis. World Wide Web, 23, 2715-2737.
    [CrossRef]   [Google Scholar]
  8. Rohart, F., Gautier, B., Singh, A., & Lê Cao, K. A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS computational biology, 13(11), e1005752.
    [CrossRef]   [Google Scholar]
  9. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE journal of biomedical and health informatics, 22(5), 1589-1604.
    [CrossRef]   [Google Scholar]
  10. Lee, J., Maslove, D. M., & Dubin, J. A. (2015). Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PloS one, 10(5), e0127428.
    [CrossRef]   [Google Scholar]
  11. Adhikari, N. K., Fowler, R. A., Bhagwanjee, S., & Rubenfeld, G. D. (2010). Critical care and the global burden of critical illness in adults. The Lancet, 376(9749), 1339-1346.
    [CrossRef]   [Google Scholar]
  12. Adhikari, N. K., & Rubenfeld, G. D. (2011). Worldwide demand for critical care. Current opinion in critical care, 17(6), 620-625.
    [CrossRef]   [Google Scholar]
  13. Citerio, G., Park, S., Schmidt, J. M., Moberg, R., Suarez, J. I., Le Roux, P. D., & Second Neurocritical Care Research Conference Investigators. (2015). Data collection and interpretation. Neurocritical care, 22, 360-368.
    [CrossRef]   [Google Scholar]
  14. Roshdy, A. (2019). Admission to the intensive care unit: the need to study complexity and solutions. Annals of Intensive Care, 9(1), 14.
    [CrossRef]   [Google Scholar]
  15. Fuhrmann, V., Weber, T., Roedl, K., Motaabbed, J., Tariparast, A., Jarczak, D., ... & Kluge, S. (2020). Advanced organ support (ADVOS) in the critically ill: first clinical experience in patients with multiple organ failure. Annals of intensive care, 10, 1-10.
    [CrossRef]   [Google Scholar]
  16. Vincent, J. L., Lefrant, J. Y., Kotfis, K., Nanchal, R., Martin-Loeches, I., Wittebole, X., ... & Sakr, Y. (2018). Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive care medicine, 44, 337-344.
    [CrossRef]   [Google Scholar]
  17. Gutierrez, G. (2020). Artificial intelligence in the intensive care unit. Critical Care, 24, 1-9.
    [CrossRef]   [Google Scholar]
  18. Morris, A. H. (2018). Human cognitive limitations. Broad, consistent, clinical application of physiological principles will require decision support. Annals of the American Thoracic Society, 15(Supplement 1), S53-S56.
    [CrossRef]   [Google Scholar]
  19. Chen, R. C., Dewi, C., Huang, S. W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1), 52.
    [CrossRef]   [Google Scholar]
  20. Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518.
    [CrossRef]   [Google Scholar]
  21. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246.
    [CrossRef]   [Google Scholar]
  22. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. Reply. The New England journal of medicine, 380(26), 2589-2590.
    [CrossRef]   [Google Scholar]
  23. Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific data, 6(1), 96.
    [CrossRef]   [Google Scholar]
  24. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29.
    [CrossRef]   [Google Scholar]
  25. Mutawa, A. M. (2025). Predicting Intensive Care Unit Admissions in COVID-19 Patients: An AI-Powered Machine Learning Model. Big Data and Cognitive Computing, 9(1), 13.
    [CrossRef]   [Google Scholar]
  26. Chung, A., Famouri, M., Hryniowski, A., & Wong, A. (2021). COVID-net clinical ICU: Enhanced prediction of ICU admission for COVID-19 patients via explainability and trust quantification. arXiv preprint arXiv:2109.06711.
    [CrossRef]   [Google Scholar]
  27. Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. Journal of biomedical informatics, 83, 112-134.
    [CrossRef]   [Google Scholar]
  28. Arnaud, E., Elbattah, M., Ammirati, C., Dequen, G., & Ghazali, D. A. (2022). Use of artificial intelligence to manage patient flow in emergency department during the Covid-19 pandemic: a prospective, single-center study. International Journal of Environmental Research and Public Health, 19(15), 9667.
    [CrossRef]   [Google Scholar]
  29. Ortiz-Barrios, M., Arias-Fonseca, S., Ishizaka, A., Barbati, M., Avendaño-Collante, B., & Navarro-Jiménez, E. (2023). Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. Journal of business research, 160, 113806.
    [CrossRef]   [Google Scholar]
  30. Grand-Clément, J., Goh, Y. H., Chan, C., Goyal, V., & Chuang, E. (2021). Interpretable machine learning for resource allocation with application to ventilator triage. arXiv preprint arXiv:2110.10994.
    [CrossRef]   [Google Scholar]
  31. Grand-Clément, J., Goh, Y. H., Chan, C., Goyal, V., & Chuang, E. (2021). Interpretable machine learning for resource allocation with application to ventilator triage. arXiv preprint arXiv:2110.10994.
    [CrossRef]   [Google Scholar]
  32. Noroozi, Z., Orooji, A., & Erfannia, L. (2023). Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction. Scientific reports, 13(1), 22588.
    [CrossRef]   [Google Scholar]
  33. Van Houdenhoven, M., Nguyen, D. T., Eijkemans, M. J., Steyerberg, E. W., Tilanus, H. W., Gommers, D., ... & Kazemier, G. (2007). Optimizing intensive care capacity using individual length-of-stay prediction models. Critical Care, 11, 1-10.
    [CrossRef]   [Google Scholar]
  34. Peres, I. T., Hamacher, S., Oliveira, F. L. C., Bozza, F. A., & Salluh, J. I. F. (2022). Data-driven methodology to predict the ICU length of stay: A multicentre study of 99,492 admissions in 109 Brazilian units. Anaesthesia Critical Care & Pain Medicine, 41(6), 101142.
    [CrossRef]   [Google Scholar]
  35. Iwase, S., Nakada, T. A., Shimada, T., Oami, T., Shimazui, T., Takahashi, N., ... & Kawakami, E. (2022). Prediction algorithm for ICU mortality and length of stay using machine learning. Scientific reports, 12(1), 12912.
    [CrossRef]   [Google Scholar]
  36. Hempel, L., Sadeghi, S., & Kirsten, T. (2023). Prediction of intensive care unit length of stay in the MIMIC-IV dataset. Applied Sciences, 13(12), 6930.
    [CrossRef]   [Google Scholar]
  37. Jain, R., Singh, M., Rao, A. R., & Garg, R. (2024). Predicting hospital length of stay using machine learning on a large open health dataset. BMC Health Services Research, 24(1), 860.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Sabrou, S., Guezzaz, A., Ravi, V., Benkirane, S., & Azrour, M. (2025). Optimizing ICU Resource Allocation During the COVID-19 Crisis: An AI-Driven Approach. Biomedical Informatics and Smart Healthcare, 1(1), 9–17. https://doi.org/10.62762/BISH.2025.457428

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 46
PDF Downloads: 11

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Biomedical Informatics and Smart Healthcare

Biomedical Informatics and Smart Healthcare

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.