-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Frontiers in Biomedical Signal Processing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Kiran Kumar Patro
Kiran Kumar Patro
Aditya Institute of Technology and Management, India
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Frontiers in Biomedical Signal Processing, Volume 1, Issue 1, 2025: 1-23

Open Access | Research Article | 16 May 2025
Clustering Analysis of Long-Term Cardiovascular Complications in COVID-19 Patients
1 Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, United Kingdom
2 Student Research Committee, Urmia University of Medical Sciences, Urmia‚ Iran
3 Hull York Medical School, University of York, York, United Kingdom
4 Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
5 Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
6 Department of Infectious Diseases and Dermatology, School of Medicine, Taleghani Hospital, Urmia University of Medical Sciences, Urmia, Iran
7 Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
* Corresponding Author: Alireza Soleimani Mamalo, [email protected]
Received: 31 March 2025, Accepted: 05 April 2025, Published: 16 May 2025  
Abstract
This study investigates long-term cardiovascular sequelae in COVID-19 survivors using advanced clustering methodologies. By analyzing ECG parameters, demographic information, comorbidities, and hospitalization data, three distinct clusters were identified based on heart rate variability (HRV) and ICU admissions. Cluster 0 exhibited moderate HRV with ICU admissions, Cluster 1 showed lower HRV alongside ICU admissions, and Cluster 2 displayed higher HRV with ICU admissions, all suggesting varying levels of cardiovascular risk. The robustness and stability of the clusters were validated through bootstrapping, confirming the reliability of the model. The findings underscore significant heterogeneity in post-COVID-19 cardiovascular outcomes, highlighting the need for tailored post-recovery care strategies. The clustering model demonstrates potential as a clinical decision support tool for early identification of high-risk patients and optimization of healthcare resources, ultimately improving patient outcomes.

Graphical Abstract
Clustering Analysis of Long-Term Cardiovascular Complications in COVID-19 Patients

Keywords
COVID-19
cardiovascular complications
clustering analysis
K-means
ECG parameters

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Sadegh-Zadeh, S. A., Bahrami, M., Najafi, A., Asgari-Ahi, M., Campion, R., & Hajiyavand, A. M. (2022). Evaluation of COVID-19 pandemic on components of social and mental health using machine learning, analysing United States data in 2020. Frontiers in Psychiatry, 13, 933439.
    [CrossRef]   [Google Scholar]
  2. Long, B., Brady, W. J., Koyfman, A., & Gottlieb, M. (2020). Cardiovascular complications in COVID-19. The American journal of emergency medicine, 38(7), 1504-1507.
    [CrossRef]   [Google Scholar]
  3. Bansal, M. (2020). Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 247-250.
    [CrossRef]   [Google Scholar]
  4. Clerkin, K. J., Fried, J. A., Raikhelkar, J., Sayer, G., Griffin, J. M., Masoumi, A., ... & Uriel, N. (2020). COVID-19 and cardiovascular disease. Circulation, 141(20), 1648-1655.
    [CrossRef]   [Google Scholar]
  5. Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 17(9), 543-558.
    [CrossRef]   [Google Scholar]
  6. Kole, C., Stefanou, E., Karvelas, N., Schizas, D., & Toutouzas, K. P. (2024). Acute and post-acute COVID-19 cardiovascular complications: a comprehensive review. Cardiovascular drugs and therapy, 38(5), 1017-1032.
    [CrossRef]   [Google Scholar]
  7. Zijlmans, M., Flanagan, D., & Gotman, J. (2002). Heart rate changes and ECG abnormalities during epileptic seizures: prevalence and definition of an objective clinical sign. Epilepsia, 43(8), 847-854.
    [CrossRef]   [Google Scholar]
  8. Bayes, A., Spoelma, M., & Parker, G. (2022). Comorbid bipolar disorder and borderline personality disorder: Diagnosis using machine learning. Journal of Psychiatric Research, 152, 1-6.
    [CrossRef]   [Google Scholar]
  9. Sadegh-Zadeh, S. A. (2019). Computational methods toward early detection of neuronal deterioration (Doctoral dissertation, University of Hull).
    [Google Scholar]
  10. Zadeh, S. S., & Kambhampati, C. (2017). All-or-none principle and weakness of Hodgkin-Huxley mathematical model. Int. J. Math. Comput. Sci, 11, 453.
    [Google Scholar]
  11. Gupta, A., Madhavan, M. V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T. S., ... & Landry, D. W. (2020). Extrapulmonary manifestations of COVID-19. Nature medicine, 26(7), 1017-1032.
    [CrossRef]   [Google Scholar]
  12. Libby, P., & Lüscher, T. (2020). COVID-19 is, in the end, an endothelial disease. Eur Heart J, 41(32), 3038–3044.
    [CrossRef]   [Google Scholar]
  13. Lala, A., Johnson, K. W., Januzzi, J. L., Russak, A. J., Paranjpe, I., Richter, F., ... & Mount Sinai COVID Informatics Center. (2020). Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. Journal of the American college of cardiology, 76(5), 533-546.
    [CrossRef]   [Google Scholar]
  14. Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., ... & Huang, C. (2020). Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA cardiology, 5(7), 802-810.
    [CrossRef]   [Google Scholar]
  15. Wissel, B. D., Greiner, H. M., Glauser, T. A., Pestian, J. P., Kemme, A. J., Santel, D., ... & Dexheimer, J. W. (2021). Early identification of epilepsy surgery candidates: A multicenter, machine learning study. Acta Neurologica Scandinavica, 144(1), 41-50.
    [CrossRef]   [Google Scholar]
  16. Wichmann, D., Sperhake, J. P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A., ... & Kluge, S. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Annals of internal medicine, 173(4), 268-277.
    [CrossRef]   [Google Scholar]
  17. Huang, L., Zhao, P., Tang, D., Zhu, T., Han, R., Zhan, C., ... & Xia, L. (2020). Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. Cardiovascular Imaging, 13(11), 2330-2339.
    [CrossRef]   [Google Scholar]
  18. Puntmann, V. O., Carerj, M. L., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., ... & Nagel, E. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA cardiology, 5(11), 1265-1273.
    [CrossRef]   [Google Scholar]
  19. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
    [CrossRef]   [Google Scholar]
  20. Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of data science, 2(2), 165-193.
    [CrossRef]   [Google Scholar]
  21. Pourghebleh, B., Aghaei Anvigh, A., Ramtin, A. R., & Mohammadi, B. (2021). The importance of nature-inspired meta-heuristic algorithms for solving virtual machine consolidation problem in cloud environments. Cluster Computing, 24(3), 2673-2696.
    [CrossRef]   [Google Scholar]
  22. Toledo Reyes, L., Knorst, J. K., Ortiz, F. R., Brondani, B., Emmanuelli, B., Saraiva Guedes, R., ... & Ardenghi, T. M. (2023). Early childhood predictors for dental caries: a machine learning approach. Journal of Dental Research, 102(9), 999-1006.
    [CrossRef]   [Google Scholar]
  23. Dehghan, S., Rabiei, R., Choobineh, H., Maghooli, K., Nazari, M., & Vahidi-Asl, M. (2024). Comparative study of machine learning approaches integrated with genetic algorithm for IVF success prediction. Plos one, 19(10), e0310829.
    [CrossRef]   [Google Scholar]
  24. Xi, L., Kang, H., Deng, M., Xu, W., Xu, F., Gao, Q., Xie, W., Zhang, R., Liu, M., Zhai, Z., & Wang, C. (2023). A machine learning model for diagnosing acute pulmonary embolism and comparison with wells score, revised Geneva score, and years algorithm. Chinese Medical Journal, 137(6), 676-682.
    [CrossRef]   [Google Scholar]
  25. Lloyd, S. (1982). Least squares quantization in PCM. IEEE transactions on information theory, 28(2), 129-137.
    [CrossRef]   [Google Scholar]
  26. Tan, W. Y., Hargreaves, C., Chen, C., & Hilal, S. (2023). A machine learning approach for early diagnosis of cognitive impairment using population-based data. Journal of Alzheimer’s Disease, 91(1), 449-461.
    [CrossRef]   [Google Scholar]
  27. Heidari, S. I. G., Safehian, M., Moodi, F., & Shadroo, S. (2024). Predictive modeling of the long-term effects of combined chemical admixtures on concrete compressive strength using machine learning algorithms. Case Studies in Chemical and Environmental Engineering, 10, 101008.
    [CrossRef]   [Google Scholar]
  28. Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86-97.
    [CrossRef]   [Google Scholar]
  29. Anuragi, A., Sisodia, D. S., & Pachori, R. B. (2024). Mitigating the curse of dimensionality using feature projection techniques on electroencephalography datasets: an empirical review. Artificial Intelligence Review, 57(3), 75.
    [CrossRef]   [Google Scholar]
  30. Meng, J., Liu, J., Song, W., Li, H., Wang, J., Zhang, L., ... & Jiang, T. (2024). PREDAC-CNN: predicting antigenic clusters of seasonal influenza A viruses with convolutional neural network. Briefings in Bioinformatics, 25(2), bbae033.
    [CrossRef]   [Google Scholar]
  31. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231).
    [Google Scholar]
  32. Sanjeevi, G., Gopalakrishnan, U., Parthinarupothi, R. K., & Madathil, T. (2024). Deep learning supported echocardiogram analysis: A comprehensive review. Artificial Intelligence in Medicine, 102866.
    [CrossRef]   [Google Scholar]
  33. Besson, P., Parrish, T., Katsaggelos, A. K., & Bandt, S. K. (2021). Geometric deep learning on brain shape predicts sex and age. Computerized Medical Imaging and Graphics, 91, 101939.
    [CrossRef]   [Google Scholar]
  34. Templ, M. (2023). Enhancing precision in large-scale data analysis: an innovative robust imputation algorithm for managing outliers and missing values. Mathematics, 11(12), 2729.
    [CrossRef]   [Google Scholar]
  35. Thakur, A., Kumar, A., Mishra, S. K., Behera, S. K., Sethi, J., Sahu, S. S., & Swain, S. K. (2024). Product Length Predictions with Machine Learning: An Integrated Approach Using Extreme Gradient Boosting. SN Computer Science, 5(6), 659.
    [CrossRef]   [Google Scholar]
  36. Favorskaya, M. N. (2023). Deep learning for visual SLAM: the state-of-the-art and future trends. Electronics, 12(9), 2006.
    [CrossRef]   [Google Scholar]
  37. Sullivan, J. H., Warkentin, M., & Wallace, L. (2021). So many ways for assessing outliers: What really works and does it matter?. Journal of Business Research, 132, 530-543.
    [CrossRef]   [Google Scholar]
  38. Aguinis, H., Gottfredson, R. K., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. Organizational research methods, 16(2), 270-301.
    [CrossRef]   [Google Scholar]
  39. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
    [Google Scholar]
  40. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM computing surveys (CSUR), 50(6), 1-45.
    [CrossRef]   [Google Scholar]
  41. Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). An effective and adaptable K-means algorithm for big data cluster analysis. Pattern Recognition, 139, 109404.
    [CrossRef]   [Google Scholar]
  42. Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.
    [CrossRef]   [Google Scholar]
  43. Argiento, R., Cremaschi, A., & Guglielmi, A. (2014). A “density-based” algorithm for cluster analysis using species sampling Gaussian mixture models. Journal of Computational and Graphical Statistics, 23(4), 1126-1142.
    [CrossRef]   [Google Scholar]
  44. Huang, Z., Zheng, H., Li, C., & Che, C. (2024). Application of machine learning-based k-means clustering for financial fraud detection. Academic Journal of Science and Technology, 10(1), 33-39.
    [Google Scholar]
  45. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.
    [CrossRef]   [Google Scholar]
  46. Bouvier, F., Chaimani, A., Peyrot, E., Gueyffier, F., Grenet, G., & Porcher, R. (2024). Estimating individualized treatment effects using an individual participant data meta-analysis. BMC Medical Research Methodology, 24(1), 74.
    [CrossRef]   [Google Scholar]
  47. Rekkas, A., Rijnbeek, P. R., Kent, D. M., Steyerberg, E. W., & van Klaveren, D. (2023). Estimating individualized treatment effects from randomized controlled trials: a simulation study to compare risk-based approaches. BMC Medical Research Methodology, 23(1), 74.
    [CrossRef]   [Google Scholar]
  48. Huang, X., Liu, L., Eli, B., Wang, J., Chen, Y., & Liu, Z. (2022). Mental health of COVID-19 survivors at 6 and 12 months postdiagnosis: a cohort study. Frontiers in Psychiatry, 13, 863698.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Sadegh-Zadeh, S. A., Mamalo, A. S., Saadat, S., Behnemoon, M., Ojarudi, M., Gharebaghi, N., & Pashaei, M. R. (2025). Clustering Analysis of Long-Term Cardiovascular Complications in COVID-19 Patients. Frontiers in Biomedical Signal Processing, 1(1), 1–23. https://doi.org/10.62762/FBSP.2025.731159

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 131
PDF Downloads: 79

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Frontiers in Biomedical Signal Processing

Frontiers in Biomedical Signal Processing

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.