-
CiteScore
1.30
Impact Factor
Volume 2, Issue 2, IECE Transactions on Sensing, Communication, and Control
Volume 2, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Quanmin Zhu
Quanmin Zhu
University of the West of England, United Kingdom
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Sensing, Communication, and Control, Volume 2, Issue 2, 2025: 95-105

Free to Read | Research Article | 18 May 2025
Computational Study to Explore the Role of WS2-ETL and CuI-HTL in the Optimized Performance of Perovskite Solar Cell
1 Department of Physics (FEAS), Riphah International University, Islamabad 44000, Pakistan
2 Department of Physics, Rawalpindi Women University, Rawalpindi, Pakistan
3 Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
4 Electrical and Electronic Engineering Department, Beaconhouse International College, Islamabad 44000, Pakistan
* Corresponding Author: Bilal Mushtaq, [email protected]
Received: 20 February 2025, Accepted: 07 April 2025, Published: 18 May 2025  
Abstract
This study aims to computationally investigate the role of WS2 as an electron transport layer (ETL) and CuI as a hole transport layer (HTL) in optimizing the performance of perovskite solar cells (PSCs). The novelty lies in systematic optimization of band gaps, layer thicknesses, and temperatures to achieve enhanced performance metrics, utilizing the unique properties of WS2 and CuI, which are less explored compared to conventional materials like TiO_2 and Spiro-OMeTAD. The optimized PSC configuration achieves a power conversion efficiency (PCE) of 20.71% with a fill factor (FF) of 71.80%, an open-circuit voltage (Voc) of 0.8469 V, and short-circuit current density (Jsc) of 34.06894 mA/cm^2 under standard conditions.

Graphical Abstract
Computational Study to Explore the Role of WS2-ETL and CuI-HTL in the Optimized Performance of Perovskite Solar Cell

Keywords
perovskite solar cells (PSCs)
electron transport layer (ETL)
hole transport layer (HTL)
WS2 (tungsten disulfide)
power conversion efficiency (PCE)
band gap optimization

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Inamuddin, Ahamed, M. I., Boddula, R., & Rezakazemi, M. (2021). Fundamentals of solar cell design. John Wiley & Sons.
    [Google Scholar]
  2. ULLAH, S. (2017). Thin film solar cells based on copper-indiumgalium selenide (Cigs) materials deposited by electrochemical techniques.
    [CrossRef]   [Google Scholar]
  3. Awan, A. B., & Khan, Z. A. (2014). Recent progress in renewable energy – Remedy of energy crisis in Pakistan. Renewable and Sustainable Energy Reviews, 33, 236-253.
    [CrossRef]   [Google Scholar]
  4. Staff, I. (2016). 2016 IEEE 43rd photovoltaic specialists conference (PVSC).
    [CrossRef]   [Google Scholar]
  5. Sadhukhan, P., Roy, A., Bhandari, S., Mallick, T. K., Das, S., & Sundaram, S. (2023). Achieving high open circuit voltage for hole transport layer free ambient perovskite solar cells utilizing electric double layer effect. Solar Energy Materials and Solar Cells, 251, 112148.
    [CrossRef]   [Google Scholar]
  6. Bhandari, K. P., Collier, J. M., Ellingson, R. J., & Apul, D. S. (2015). Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 47, 133-141.
    [CrossRef]   [Google Scholar]
  7. Al-Dhaifallah, M. (2023). Analytical solutions using special trans functions theory for current–voltage expressions of perovskite solar cells and their approximate equivalent circuits. Ain Shams Engineering Journal, 14(12), 102225.
    [CrossRef]   [Google Scholar]
  8. Chen, Q., Bai, L., Tsiba Matondo, J., Deng, M., Malouangou Maurice, D., & Guli, M. (2021). Additive engineering for sn-based PSCs: Enhancement of open-circuit voltage and fill factor. Solar Energy, 214, 26-50.
    [CrossRef]   [Google Scholar]
  9. Emon, M. S. A., Ahmad, M. U., & Hasanuzzaman, M. (2022). Solar thermal energy conversion. In Technologies for Solar Thermal Energy (pp. 25-54). Academic Press.
    [CrossRef]   [Google Scholar]
  10. Jaiswal, R., Kumar, A., & Yadav, A. (2022). Nanomaterials based solar cells. In Nanotechnology in the Automotive Industry (pp. 467-484). Elsevier.
    [CrossRef]   [Google Scholar]
  11. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), 6050-6051.
    [CrossRef]   [Google Scholar]
  12. Pawar, P. S., Koyale, P. A., Dhodamani, A. G., & Delekar, S. D. (2022). Nanocrystalline metal oxide-based hybrids for third-generation solar cell technologies. In Advances in Metal Oxides and Their Composites for Emerging Applications (pp. 263-286). Elsevier.
    [CrossRef]   [Google Scholar]
  13. Ortega-San-Martin, L. (2023). Introduction to perovskites. In Perovskite Ceramics (pp. 3-29). Elsevier.
    [CrossRef]   [Google Scholar]
  14. Bhattarai, S., Mhamdi, A., Hossain, I., Raoui, Y., Pandey, R., Madan, J., ... & Sharma, A. (2022). A detailed review of perovskite solar cells: Introduction, working principle, modelling, fabrication techniques, future challenges. Micro and Nanostructures, 172, 207450.
    [CrossRef]   [Google Scholar]
  15. Boix, P. P., Nonomura, K., Mathews, N., & Mhaisalkar, S. G. (2014). Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials today, 17(1), 16-23.
    [CrossRef]   [Google Scholar]
  16. Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344.
    [CrossRef]   [Google Scholar]
  17. Jena, A. K., Kulkarni, A., & Miyasaka, T. (2019). Halide perovskite photovoltaics: background, status, and future prospects. Chemical reviews, 119(5), 3036-3103.
    [CrossRef]   [Google Scholar]
  18. Gao, P., Grätzel, M., & Nazeeruddin, M. K. (2014). Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science, 7(8), 2448-2463.
    [CrossRef]   [Google Scholar]
  19. Lee, H. K. H., Barbé, J., & Tsoi, W. C. (2020). Organic and perovskite photovoltaics for indoor applications. In Solar Cells and Light Management (pp. 355-388). Elsevier.
    [CrossRef]   [Google Scholar]
  20. Akhtaruzzaman, M., Selvanathan, V., Shahiduzzaman, M., & Hossain, M. I. (2022). Introduction to organic-inorganic hybrid solar cells. In Comprehensive Guide on Organic and Inorganic Solar Cells (pp. 187-193). Academic Press.
    [CrossRef]   [Google Scholar]
  21. Cuculescu, E., Evtodiev, I., Caraman, I., Leontie, L., Nedeff, V., & Rusu, D. I. (2011). Transport and generation–recombination mechanisms of nonequilibrium charge carriers in ZnO/In2O3/InSe: Cd heterojunctions. Thin Solid Films, 519(21), 7356-7359.
    [CrossRef]   [Google Scholar]
  22. Stangl, R., Leendertz, C., & Haschke, J. (2010). Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the Open-Source on Demand Program AFORS-HET. In Solar Energy. IntechOpen.
    [Google Scholar]
  23. Kumar, N. S., & Naidu, K. C. B. (2021). A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 7(5), 940-956.
    [CrossRef]   [Google Scholar]
  24. Sahoo, S. K., Manoharan, B., & Sivakumar, N. (2018). Introduction: Why perovskite and perovskite solar cells?. In Perovskite photovoltaics (pp. 1-24). Academic Press.
    [CrossRef]   [Google Scholar]
  25. Lee, D. G. (2018). Renewable energy: power for a sustainable future. Australasian Journal of Environmental Management, 25(2), 248.
    [CrossRef]   [Google Scholar]
  26. Rahman, M. A., & Chowdhury, F. I. (2023). Low-dimensional halide perovskite for solar cell applications. In Low-Dimensional Halide Perovskites (pp. 239-265). Elsevier.
    [CrossRef]   [Google Scholar]
  27. Wang, Y., Arumugam, G. M., Mahmoudi, T., Mai, Y., & Hahn, Y. B. (2021). A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 87, 106141.
    [CrossRef]   [Google Scholar]
  28. Chi, W., & Banerjee, S. K. (2023). Comparison and integration of CuInGaSe and perovskite solar cells. Journal of Energy Chemistry, 78, 463-475.
    [CrossRef]   [Google Scholar]
  29. Hima, A., Khechekhouche, A., & Kemerchou, I. (2020). Enhancing of CH3NH3SnI3 based solar cell efficiency by ETL engineering. International Journal of Energetica, 5(1), 27-30. http://dx.doi.org/10.47238/ijeca.v5i1.119. June 2020
    [Google Scholar]
  30. Kaifi, M., & Gupta, S. K. (2019). Simulation of perovskite based solar cell and photodetector using SCAPS software. Int. J. Eng. Res. Technol, 10(12), 1778-1786.
    [Google Scholar]
  31. Haidari, G. (2019). Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Advances, 9(8).
    [CrossRef]   [Google Scholar]
  32. Isoe, W., Mageto, M., Maghanga, C., Mwamburi, M., Odari, V., & Awino, C. (2020). Thickness dependence of window layer on CH3NH3PbI3-XClX perovskite solar cell. International Journal of Photoenergy, 2020(1), 8877744.
    [CrossRef]   [Google Scholar]
  33. Wang, L., Liu, G., Xu, R., Wang, X., Wang, L., Yao, Z., ... & Lu, J. (2023). Enabling an intrinsically safe and high‐energy‐density 4.5 V‐class lithium‐ion battery with synergistically incorporated fast ion conductors. Advanced Energy Materials, 13(18), 2203999.
    [CrossRef]   [Google Scholar]
  34. Liang, G., Li, Z., Ishaq, M., Zheng, Z., Su, Z., Ma, H., ... & Chen, S. (2023). Charge separation enhancement enables record photocurrent density in Cu2ZnSn (S, Se) 4 photocathodes for efficient solar hydrogen production. Advanced Energy Materials, 13(19), 2300215.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Bibi, N., Qasim, I., Seemab, N., & Mushtaq, B. (2025). Computational Study to Explore the Role of WS2-ETL and CuI-HTL in the Optimized Performance of Perovskite Solar Cell. IECE Transactions on Sensing, Communication, and Control, 2(2), 95–105. https://doi.org/10.62762/TSCC.2025.859391

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 202
PDF Downloads: 58

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Sensing, Communication, and Control

IECE Transactions on Sensing, Communication, and Control

ISSN: 3065-7431 (Online) | ISSN: 3065-7423 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.