
IECE Transactions on Advanced Computing and Systems
http://dx.doi.org/10.62762/TACS.2024.318686

RESEARCH ARTICLE

Adaptive Fuzzy Controller for Chaos Suppression in
Nonlinear Fractional Order Systems

Amin Sharafian 1, Islam MdMonirul 1, Mohammad Jafar Mokarram1 and Inam Ullah 2,*

1College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
2Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea

Abstract
This paper introduces a novel method for
controlling a class of nonlinear non-affine systems
with fractional-order dynamics, using an adaptive
fuzzy technique. By incorporating a novel fractional
update law in the design procedure, the controller
can effectively suppress chaotic behaviour and
smoothly track desired trajectories. The proposed
method offers key advantages such as robustness
against uncertainties, fast error convergence
to the neighbourhood of zero, and satisfactory
disturbance rejection performance. To demonstrate
the capabilities of the proposed fractional controller,
simulation results were conducted using Python
on a fractional order Arneodo chaotic system. The
results highlight the effectiveness and potential of
the proposedmethod in controlling fractional-order
systems.
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1 Introduction
In recent years, fractional-order systems (FOSs) have
become a prominent area of research and application
due to their ability to model complex dynamic
behaviors with greater accuracy and flexibility
compared to traditional integer-order systems. The
inclusion of fractional derivatives and integrals in these
systems allows for the representation of memory and
hereditary effects, which are crucial for accurately
describing a wide range of physical, biological, and
engineering processes. Additionally, FOSs offer
an extensive stability region, providing enhanced
robustness and control design flexibility. This
broader stability region enables FOSs to maintain
desired performance under varying conditions, such
as external disturbances and model uncertainties,
where integer-order systems often fall short. These
advantages have led to widespread adoption of
fractional-order models in diverse fields, including
financial systems [1], diseases [2] batteries [3–5] and
energy systems [6, 7].

Comparing to integer-order systems, fractional-order
(FO) state-space representation offers greater
flexibility and accuracy in describing a wide range of
natural phenomena. However, designing controllers
for FOSs presents inherent challenges due to their
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complex nature. Despite this, numerous research
efforts have successfully advanced effective control
techniques, making substantial contributions to
the field, including the design of robust controllers
optimal control strategies, and adaptive control
techniques tailored to FOSs. In particular, in [8],
a neural state estimator design was proposed for
controlling chaotic FOSs. In [9], active control and
unidirectional coupling were used to synchronize
three-dimensional FOSs, effectively suppressing
chaotic behaviour. Reference [10] examines the
analysis and control of hyperchaotic financial systems
modelled with FOs. In [11], synchronization of
two chaotic FOSs was achieved by employing a
FO sliding mode technique with a time-varying
switching surface controller. Additionally, in [12, 13],
an observer-based FO sliding mode control design
was proposed to stabilize a practical system. In [14], a
terminal sliding mode controller was developed for
stabilizing an FOS, with transformation of the “sgn”
function into the fractional derivatives of the controller
input to achieve a chattering-free controller. Finally,
in [15, 16], the author investigated the conditions for
synchronizing chaotic FOSs through the activation
feedback approach.

The use of fuzzy systems for modelling nonlinear
systems and the development of fuzzy-based control
techniques have been extensively explored in previous
researches, with applications to practical systems
such as satellite attitude control [17], autonomous
underwater vehicles [18], power systems [19], and
robotic applications [20]. For instance; an adaptive
fuzzy control (AFC) is designed for tracking the
trajectory of a low-scale unmanned aerial vehicle,
based on a new fuzzy adaptive neural proportional
integral derivative controller [21], an adaptive fuzzy
tire cornering stiffness strategy and a trajectory
tracking autonomous steering control strategy were
proposed in [22], an adaptive fuzzy control problem is
studied in [23] for a connected automated vehicles
platoon subject to unknown dead-zone input and
constraints and [24] studies the AFC control problem
of uncertain nonlinear systemswith unknownmultiple
classes of actuator faults.

Nonetheless, there has been limited research on
using Adaptive fuzzy-based methods to control FO
dynamics. For instance, in [25], a command filtered
AFC approach was developed for nonlinear FOSs
(NFOSs), utilizing the fractional backstepping control
method. Additionally, in [26], a novel event-triggered
AFC tracking approach was studied for NFOSs

considering the uncertainties of the model and in
presence of external disturbances. In [27], an
event-triggered hybrid AFC method was proposed for
a class of uncertain non-strict-feedback multi-input
multi-output (MIMO) NFOSs. Finally, in [28], a fuzzy
dead-zone input was used to address the tracking
control of strict feedback NFOSs with unmeasurable
states. These investigations reflect continuous efforts
to advance effective techniques to control FOSs, which
have significant potential for applications in various
fields of engineering and science. Particularly, the
studies underscored the use of fuzzy-based methods
for managing FO dynamics, offering significant
prospects for engineering and scientific applications.

This paper presents a novel method for chaos
suppression of nonaffine NFOSs, which involves an
FO AFC approach. The contributions of the paper are
presented as follows:

• This paper introduces a novel FO AFC approach
specifically designed for chaos suppression in
nonaffine nonlinear fractional-order systems
(NFOSs). The method is capable of handling
systems with unknown parameters, offering
enhanced adaptability and flexibility compared
to traditional methods.

• Unlike previous approaches that often impose
stringent assumptions on system dynamics
or control inputs, the proposed technique is
applicable to a broader class of non-affine NFOSs.
This lack of restrictive assumptions increases
the method’s practical applicability to real-world
systems with more complex dynamics.

• The proposed control strategy demonstrates
robust performance in the presence of external
disturbances and uncertainties. This makes
it particularly suitable for applications where
the system is subject to unpredictable external
factors, offering improved disturbance rejection
and overall system stability.

This article is structured into multiple sections. Section
2 offers a survey to the fundamental concepts and
preliminaries of fractional calculus and also introduces
the fuzzy systems. Section 3 introduces a novel
control strategy based on a FO AFC and also presents
the conditions for stability of closed loop system
through the fractional Lyapunov method. To validate
the capability of the proposed technique, several
numerical simulations are conducted on Arneodo
chaotic FOS using Python in Section 4. Finally, the
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work is concluded in Section 5.

2 Preliminaries
2.1 Fractional Calculus
This section introduces FOSs that enables a more
precise depiction of complex phenomena and
real-world application comparing with integer-order
model. Fractional calculus utilizes novel operators
for differentiation, which can be defined as
follows [29, 30]:

aD
β
t =


dβ

dtβ
, β > 0

1, β = 0∫ t
a(dτ)−β, β < 0

(1)

where a and t represent the integral lower and upper
bounds, while β represents the order of fractional
differentiation that must meet the condition 0.5 ≤
|β| ≤ 1. In fractional calculus, the Caputo fractional
derivative is a commonly utilized definition that
generalizes differentiation to non-integer orders. It
is defined by considering the function integer-order
derivative andmultiplying it by the gamma function of
the order of the derivative. This definition is commonly
employed in a range of applications as it facilitates
the modelling of systems that exhibit memory and
non-locality.

C
aD

β
t f(t) =

1

Γ(1− β)

∫ t

a
(t− τ)−βf(τ) dτ (2)

where Γ represents the Gamma function. The Caputo
fractional derivative is often considered advantageous
over other fractional derivative definitions—such as
the Riemann-Liouville fractional derivative—because
it incorporates a memory effect that is more natural
and interpretable in many physical and engineering
systems.
Remark 1. Consider a linear fractional order system
as Dβ

t x(t) = Ax(t). By satisfying the condition
| arg(eig(A − bK))| > β π2 , all the system state
trajectories converge to 0. Considering 0 < q < 1,
the stability of linear fractional-order systems can be
illustrated in Figure 1 [31, 32]. Unlike integer-order
systems, fractional-order systems exhibit a broader
stability region in the complex plane due to the
nature of fractional derivatives, which allow for a
more gradual decay of system states. This broader
stability region enables fractional-order systems to
tolerate larger variations in system parameters and

Figure 1. The stability interval of commensurate linear
fractional-order system with order q.

initial conditions while maintaining stability, making
them more robust in real-world applications.
Lemma 1. As stated in [33, 34], let x(t) ∈ Rn represent
a vector of differentiable functions. According to the
results presented in these references, the following
equation holds for any time instant t ≥ t0:

C
aD

β
t

(
x(t)TPx(t)

)
≤
(
x(t)TP C

aD
β
t x(t)

)
,

∀β ∈ (0, 1), ∀t ≥ t0
(3)

where P denotes a symmetric positive definite matrix.
The above Lemma holds if P is symmetric positive
definite or positive semi-definite.
Lemma 2. As described in [35, 36], let x(t) ∈ Rn be a
vector of differentiable functions. Then, if a continuous
function V : [t0,∞)× Rn → R satisfies the following
condition:

C
t0D

β
t V (t, x(t)) ≤ −αV (t, x(t)) (4)

then:

V (t, x(t)) ≤ V (t0, x(t0))Eβ

(
−α(t− t0)β

)
(5)

The proof of Lemma (2) is accessible in [37] and [38].

2.2 Fuzzy Systems
In this section, we will outline the methodology
for developing a fuzzy system that adaptively
approximates unknown uncertainties in the AFC. The
fuzzy system is structured based on IF-THEN rules, in
which the preceding part consists of fuzzy rules and
the consequent part is a linear combination of the input
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variables [39, 40]. If the number of rules is n, then the
first rule can be described as:

Rulel : if (x1 is Al1 · · ·xn is Aln) then y is Bl (6)

where Al1 are fuzzy membership functions, x =
[x1, x2, · · · , xn] and y are the crisp input and
output of the fuzzy system respectively. The
sum-product inference method is applied along with
the center-average defuzzification technique. The
fuzzy system’s output is represented as follows [25,
26]:

y(x) =

∑m
l=1 y

l
(∏n

i=1 µAli
(xi)

)
∑m

l=1

∏n
i=1 µAli

(xi)
(7)

where µAli(xi) represents the input xi membership
degree to fuzzy set Ali and

∏n
i=1 µAli

(xi) represents the
actual value of the i-th implication. The output of the
fuzzy set can be reformulated as below [27]:

y = γTψ(x) (8)

where γ =
[
γ1 γ2 · · · γn

] is a vector
containing all consequent parameters, and
ψ(x) =

[
ψ1(x) ψ2(x) · · · ψn(x)

]T is a set of
fuzzy basis functions defined as follows, consisting of
a set of fuzzy basis functions computed as:

ψ(x) =

∏n
i=1 µAli

(xi)∑m
l=1

∏n
i=1 µAli

(xi)
(9)

Assumption 1. [41, 42] It always exist one active rule
which satisfy:

m∑
l=1

n∏
i=1

µAli
(xi) > 0 (10)

3 Fractional Fuzzy Adaptive Controller
This section presents an innovative FO AFC designed
specifically for FOSs, featuring a unique fractional
update law that enhances the controller’s robustness
for FOSs. Fuzzy systems are effective in approximating
nonlinear functions with a satisfactory degree of
accuracy, which makes them a proper approach for
addressing the nonlinearities inherent in chaotic FOSs.
Let’s express the dynamics of a non-affine NFOS as
follows:{

Dq
t (xi(t)) = xi+1(t), i = 1, 2, . . . , n− 1

Dq
t (xn(t)) = f(x, u) + d(t)

(11)

where 0 < q < 1, x ∈ Rn are the states of the
NFOS and f(x, u) represents a smooth unmodeled
function exhibiting uncertain nonlinear characteristics.
Additionally, d(t) is a bounded disturbance. The
objective is to develop an appropriate controller that
satisfies limt→∞ ‖e(t)‖ = 0. The configuration of
the FOS in eq. (11) can be defined by the following
equation:

Dq
t (x(t)) = Ax(t) + b (f(x, u) + d(t)) (12)

where the matrices A and b can be extracted as below:

A =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rn×n, b =


0
0
...
0
1

 ∈ Rn

Assumption 2. To facilitate the analysis, we make
the assumption that the function fu(x, u) = ∂f(x,u)

∂u
satisfies the following conditions, without loss of
generality:

fu(x, u) ≥ fmin > 0 ∀(x, u) ∈ Rn × R (13)

dfu(x, u)

dt
≥ ψ (14)

In most physical systems, the output signals are
continuous by nature. For example, in mechanical
systems, the position of a moving object or the velocity
of a motor will change smoothly over time, without
abrupt jumps or discontinuities. These assumptions
simplify the analysis and are aligned with how real
systems behave in practice.
Assumption 3. As outlined in [26], we assume that
the target trajectory xd and all its fractional derivatives
are smooth and bounded within specified limits.
Assumption 4. As stated in [27, 43], it is assumed that
the disturbance is constrained within a specific bound:

d(t) ≤ dmax (15)

Figure 2 illustrates the structure of the proposed AFC
designed to ensure stability in chaotic FOSs. In order
to meet the control objective, it is essential to derive the
error vector. By stabilizing the dynamics of the error,
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Figure 2. Fractional adaptive fuzzy controller structure.

the system’s states can be guided to converge to the
desired trajectory.
e =

[
e1 e2 · · · en

]
=
[
xd − x1 Dq

t (xd)− x2 · · · D
(n−1)q
t (xd)− xn

]
(16)

where the error vector represented by e, quantifies
the deviation between the system states and the target
trajectory. Taking fractional derivation from eq. (16) ,
we can derive the dynamic of the error as follows:
Dq
t (e1(t)) = Dq

t (xd)−D
q
t (x1) = Dq

t (xd)− x2 = e2,

Dq
t (e2(t)) = e3,

...
Dq
t (en(t)) = Dnq

t (xd)− f(x, u)− d(t)

(17)
By using a similar method as in eq. (12), we can
express the error system as follows:
Dq
t (e(t)) = Ae(t) + b (Dnq

t (xd)− f(x, u)− d(t)) (18)

To design the controller, we introduce the variable v
which can be defined as follows:

v = −Dnq
t (xd)−Ke(t) + v′ (19)

The adaptive term v′ will be presented later in this
paper. In order to achieve the stability of the controller,
we choose the vectorK so that it satisfies the inequality
below:

|arg (eig(A− bK))| > β
π

2
(20)

According to Assumption (2), the following inequality
can be satisfied:

∂(f(x, u)− v)

∂u
=
∂f(x, u)

∂u
> 0 (21)

Applying the theorem of implicit function, it is clear
that the nonlinear algebraic equation f(x, u)− v = 0
is solvable locally for the input u given any arbitrary
value of (x, v). Consequently, there exists an ideal
controller u∗, that fulfills the following equality for
a specified value of (x, v) ∈ Rn × R:

f(x, u∗)− v = 0 (22)

By applying the mean value theorem [44, 45], we can
identify a constant λwithin the interval of 0 < λ < 1,
such that the function f(x, u) can be expressed around
u∗ as follows:

f(x, u) = f(x, u∗)+(u−u∗)fu = f(x, u∗)+eufu (23)

where fu = ∂f(x,u)
∂u

∣∣
u=u∗

and uλ = λu + (1− λ)u∗. So
that eq. (18) can be rewritten as:

Dq
t (e(t)) = (A− bK)e(t)− b

(
eufu + d(t) + v′

) (24)

This paper introduces a methodology for constructing
an AFC capable of estimating an ideal controller so
that the ideal controller can be extracted as follows:

u∗ = γ∗Tψ(x, v) + δ (25)

where γ∗ is the ideal parameter vector which can be
defined as:

γ∗ = argγ=∆γ
min

[
sup

∣∣γTψ(x, v)− u∗
∣∣] (26)

The actual controller can be defined as:

u = γTψ(x, v) + uz (27)

uz = sgn(eTPb)

(
uδ +

ur
fmin

+
v̂′

fmin

)
(28)
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where γTψ(x, v) estimates the ideal controller
provided in eq. (25), ur mitigates the effects of
external disturbances, and v̂′ is an estimation of v′. By
employing these approximations, the error dynamics
outlined in eq. (24) can be revised as follows:

Dq
t (e(t)) = (A− bK)e(t)

− b
((
γ̂Tψ(x, v) + uz − δ

)
fu + d(t) + v′

)
(29)

and the following inequality is always satisfied if
P,Q > 0:

(A− bk)TP + P (A− bk) < −Q (30)

Additionally, the subsequent adaptive update laws for
FOSs can be established:

Dq
t (uδ) = ζ1‖eTPb‖, (31)

Dq
t (ur) = ζ2‖eTPb‖/fmin, (32)

Dq
t (v̂
′) = ζ3‖eTPb‖/fmin, (33)

Dq
t (γ) = ζ4ψe

TPb. (34)

Theorem 1. Considering the FO differential equations
governing the error dynamics described in Equation
(29) for the non-affine NFOS (11), which adheres to
Assumption (2) and is subject to boundeddisturbances
as specified in Assumption (4), along with a desired
trajectory that complies with Assumption (3), the
controller input defined in Equations (27) and (28),
using fuzzy rules that align with Assumption (1) and
the fractional update laws outlined in Equations (31),
(32), (33), and (34), will lead to the error converging to
zero. This convergence occurs in a manner that fulfills
the conditions of Lemma (2) and successfully satisfies
the control objective limt→∞ ‖e(t)‖ = 0.
Proof. Let us examine the Lyapunov function defined
as follows:

L =
1

fu
eTPe+

ũ2
δ

ζ1
+
ũ2
r

ζ2
+
ṽ′2

ζ3
+
γ̃T γ̃

ζ4
(35)

where ũr = ur − dmax, ũδ = uδ − δmax, ṽ′ = v′− v̂′, and
γ̃ = γ − γ∗. Taking fractional derivation based on the
conditions of lemma (1) and lemma (2) gives:

Dq
t (L) ≤ −D

q
t (fu)

f2
u

eTPe+
1

fu
(Dq

t (e))
TPe+

1

fu
eTP (Dq

t (e))

+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
(36)

after substituting the error dynamic from eq. (29) into
eq. (37), we obtain:

Dq
t (L) ≤ −D

q
t (fu)

f2
u

eTPe

+
1

fu

(
(A− bK)e(t)− b

((
γ̂Tψ(x, v) + uz − δ

)
fu + d(t) + v′

))T
Pe

+
1

fu
eTP

(
(A− bK)e(t)− b

((
γ̂Tψ(x, v) + uz − δ

)
fu + d(t) + v′

))
+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
(37)

Dq
t (L) ≤ 1

fu
eT

(
− Dq

t (fu)

fu
P + (A− bK)TP + P (A− bK)

)
e

− 2eTPb
(
γ̂Tψ(x, v) + uz − δ

)
− 2

fu
eTPbd(t)− 2

fu
eTPbv′

+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
(38)

By utilizing the control inputs specified in eq. (27) and
eq. (28), the following equation is obtained:

Dq
t (L) ≤ − 1

fu
eT

(
Dq
t (fu)

fu
P +Q

)
e

− 2eTPb

(
γ̂Tψ(x, v) +

(
sgn(eTPb)

(
uδ +

ur
fmin

+
v̂′

fmin

))
− δ

)
− 2

fu
eTPbd(t)− 2

fu
eTPbv′

+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
.

(39)

Dq
t (L) ≤ − 1

fu
eT

(
Dq
t (fu)

fu
P +Q

)
e

− 2eTPbγ̂Tψ(x, v)− 2eTPb

(
sgn(eTPb)

(
uδ +

ur
fmin

+
v̂′

fmin

))
+ 2eTPbδ − 2

fu
eTPbd(t)− 2

fu
eTPbv′

+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
.

(40)

Dq
t (L) ≤ − 1

fu
eT

(
Dq
t (fu)

fu
P +Q

)
e

− 2eTPbψT (x, v)γ̃ − 2
∥∥∥eTPb∥∥∥

uδ − δmax︸ ︷︷ ︸
µ̃δ


+ 2
‖eTPb‖
fmin

ur − dmax︸ ︷︷ ︸
µ̃r

+ 2
‖eTPb‖
fmin

v̂′ − ∣∣v′∣∣
ν̃′


+ 2

(
ũδD

q
t (uδ)

ξ1
+
ũrD

q
t (ur)

ξ2
+
ṽ′Dq

t (v̂
′)

ξ3
+
Dq
t (γ)T γ̃

ξ4

)
(41)
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Finally, by applying the fractional update algorithms
presented in Equations (31) through (34), we derive
the following inequality:

Dq
t (L) ≤ − 1

fu
eT
(
Dq
t (fu)

fu
P +Q

)
e (42)

The extended Lyapunov theorem for FOSs leads to
stability of the closed-loop system, and thus the
tracking error converges to neighborhood of zero.
Additionally, the boundedness of the coefficient
parameters is guaranteed, completing the proof.

4 Simulation Results
In this section, we will demonstrate the application
of the FO AFC to the FO Arneodo chaotic system.
The simulations for this study were conducted
using Python, leveraging its robust numerical
computing libraries for implementing the proposed
fractional-order adaptive fuzzy controller. The
fractional-order Arneodo chaotic system was modeled
using the Caputo definition of fractional derivatives,
ensuring an accurate representation of systemmemory
effects. Numerical solutions to the fractional-order
differential equations were obtained using the
Cputo approximation, which is widely regarded
for its accuracy and stability in fractional-order
computations. To achieve reproducibility, the
following parameter settings were used: the step size
for numerical integration was set to h=0.01, and the
fractional-order q was fixed at 0.9 for the Arneodo
system. Gaussian membership functions were utilized
for the fuzzy controller as detailed in Section 3. The
simulation environment was implemented on a
standard computing platform with an AMD R7 7840H
processor and 32GB of RAM.
The FO Arneodo system extends the classical Arneodo
chaotic system, which consists of a three-dimensional
set of ordinary differential equations characterized by
nonlinear dynamics. This fractional version includes
a fractional derivative term that captures the memory
effect within the system, offering a more precise
representation of real-world systems that display
long-term memory behaviour. The system is defined
by three nonlinear differential equations, where the
fractional derivative is takenwith respect to the Caputo
sense. To begin, we provide the dynamical model of
the Arneodo chaotic FOS as follows:

Dq
t (x1) = x2,

Dq
t (x2) = x3,

Dq
t (x3) = αx1 − bx2 − rx3 − x3

1 + d(t) + u

(43)

where, a = 5.5, b = 3.5, r = 0.4, and q = 0.9. The
simulations conducted in previous investigations have
provided valuable insights into the behavior of the FO
Arneodo system under different orders of fractional
derivations. The findings of these simulations indicate
that chaos can exist in the system for orders less
than 3, with chaotic attractors and phase portraits
observable when q is set to 0.9, 0.8, and 0.7. However,
no chaotic behavior is observed when q is set to 0.6
or 0.5, suggesting that the system’s lowest limit of
fractional order q for chaos to occur is 0.7. In our
simulations, we follow these conditions and set q to 0.9
to demonstrate the efficacy of the designed controller
in suppressing the chaotic behavior of the system.

To ensure optimal performance of the proposed
adaptive fuzzy controller, careful selection of the
adaptive parameters is essential. In this study,
we provide a detailed guideline for choosing these
parameters, focusing on two key aspects: adaptive
gain tuning and the initialization of parameter values.
The adaptive gains, denoted as ζ1, ζ2, ζ3, and ζ4, play
a critical role in adjusting the controller’s response
to changes in system dynamics, and its value must
be carefully tuned to balance fast convergence with
stability. For instance, we initially set ζ1 = 0.3, ζ2 = 0.7,
ζ3 = 2.3, and ζ4 = 3.5 based on prior knowledge
of the system’s behavior and adjusted it iteratively
during simulations, with values ranging between 0.1
and 10, depending on the performance observed.
Additionally, the initialization of the controller’s
parameters is crucial for ensuring that the system starts
with an appropriate operating point. We initialized
the parameters of the fuzzy system, including the
membership function scaling factors, based on the
expected dynamics of the Arneodo chaotic system,
to achieve optimal tracking performance. The initial
values for the fractional derivations are [0.4 − 0.2 0.3]
and the adaptive parameters are set as fmin = 2,
ζ1 = 10, ζ2 = 10, ζ3 = 20, and ζ4 = 30. Moreover,
d(t) = 2 sin(πt) and we consider using Gaussian
membership functions to design a fuzzy controller for
chaos suppression of FO Arneodo system.

Remark 2. The control input of the system utilizes
the hyperbolic tangent function, tanh(.), which
presents several advantages over the traditional
sign(.) function. While the sign function produces
abrupt changes in control input, leading to potential
instability due to rapid switching, the tanh(.) function
provides a smooth transition between its values. This
characteristic reduces the effects ofmodel uncertainties
and external disturbances more effectively. The
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Figure 3. First state of fractional Arneodo system with control action for time greater than 10 seconds. (Left: sgn(.), Right:
tanh(.)).

Figure 4. Second state of fractional Arneodo system with control action for time greater than 10 seconds. (Left: sgn(.),
Right: tanh(.)) .

Figure 5. Third state of fractional Arneodo system with control action for time greater than 10 seconds. (Left: sgn(.),
Right: tanh(.)).

continuous nature of tanh(.) helps maintain stability
in system outputs and control inputs by avoiding the

sharp transitions associated with the sign(.) function.
In this paper, the tanh(.) function is employed as
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Figure 6. Chaotic attractor of fractional Arneodo system which is stopped its chaotic behaviour in time greater than 10
seconds. (Left: sgn(.), Right: tanh(.)).

Figure 7. Control Input (Left: sgn(.), Right: tanh(.)).

a refined approximation for the sign(.) function,
enhancing the overall performance of the control
strategy.

The first, second, and third state of the FOS are
depicted in Figures 3-5, respectively. As illustrated,
the control input is implemented on the system at
t>10. The chaotic behavior can be seen in the form
of unpredictable fluctuations in the state variables of
the system. However, once the designed control action
is applied, we can observe that the chaotic behavior of
the system is effectively suppressed. The trajectory
of the state variables becomes smoother and more
stable, indicating that the system has been brought
under control. Moreover, adding a tanh(.) function
to the control input of the Arneodo system can lead
to smoother control by restricting the output’s rate of
change and decreasing the frequency of switching so

Table 1. Comparison of controller performance using
tanh(.) and sign(.) functions.

Control
Function

Overshoot
(%)

Convergence
Rate (s)

Settling
Time (s)

Stability
Margin (dB)

sign(.) 4.5 0.44 12.2 45.6
tanh(.) 0.3 2.32 14.7 52.3

that it facilitates a more seamless and gradual shift
between control actions.

In Figure 6, It can be observed that the FO Arneodo
chaotic attractor exhibiting chaotic attractor prior to the
application of control action. Once the control action
is implemented, the chaotic behavior is successfully
suppressed and the trajectory moves straight towards
zero. Moving on to Figure 7, we can observe the control
input starting to suppress the chaotic behavior of the
FOS at t>10. Prior to the application of the control
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Figure 8. Comparison of settling times for the fractional Arneodo system states under different control actions (sgn(.)
and tanh(.)) after 10 seconds..

input, the system was exhibiting chaotic behavior, as
can be seen in the erratic trajectory of the state variables.
However, once the control action is applied, we can
see that the system starts to stabilize and converge
towards a steady state. The control input acts as a
stabilizing force, counteracting the destabilizing effects
of the chaotic behavior and allowing the system to
reach a desired state.

Figure 8 compares the settling times of the Arneodo
system states under sgn(.) and tanh(.) control
functions. Generally, it confirms that the tanh(.)
function results in longer settling times across states
compared to sgn(.), indicating a much smoother
stabilization effect. Overall, the results demonstrate
the effectiveness of the designed controller in
suppressing the chaotic behavior of the Arneodo FOSs.
Moreover, the hyperbolic tangent function, is used as a
smooth function to reduce the switching in the control
input of the Arneodo system. By applying tanh(.) to
the control input, the switching frequency is reduced
significantly, which improves the performance of the
system and reduces wear and tear on the mechanical
components in the system. Moreover, Table 1 provides
a clear comparison of the key performance metrics
between the tanh(.) and sign(.) functions.

Remark 3. To evaluate the efficacy of the proposed
fractional-order adaptive fuzzy controller, we compare

its performance with other control techniques for
fractional-order chaotic systems reported in the
literature. The fractional-order sliding mode control
approach discussed [46–48] demonstrated robust
synchronization of chaotic systems, but its reliance
on time-varying switching surfaces can lead to
high-frequency chattering, which is minimized in our
method using the smooth tanh(.) function. Similarly,
the event-triggered adaptive fuzzy control framework
introduced by [49–51] showed significant reduction
in control effort; however, its performance under high
disturbance levels was less effective compared to our
method’s robust adaptation to external disturbances.

5 Conclusion
In conclusion, this paper presents an effective
approach for controlling nonlinear non-affine systems
with FO dynamics. The AFC technique, paired
with a novel fractional update law, demonstrates
robust performance by mitigating chaotic behavior
and ensuring precise trajectory tracking. Simulation
results on the FO Arneodo chaotic system shows
the method’s robustness to uncertainties, rapid
error convergence, and strong disturbance rejection
capabilities. The potential of the proposed fractional
controller for advancing control in FOSs offers a
promising direction for future studies across various
applications, including robotics, power systems,
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biomedical engineering, and autonomous vehicles.

6 Future Directions
While the proposed adaptive fuzzy controller for
fractional-order nonlinear systems demonstrates
promising results in controlling chaotic behavior and
tracking desired trajectories, several avenues for future
research can further enhance its performance and
applicability.

1. The current implementation is focused on a
fractional-order Arneodo chaotic system. Future
research could investigate the scalability and
effectiveness of the proposed controller for
systems with incommensurate fractional orders,
as well as for more complex fractional-order
systems. This could include multi-agent systems
and systemswithmultiple interacting subsystems,
where the fractional orders may vary across
different states of the systems.

2. Although the controller shows robust
performance in the presence of uncertainties and
disturbances, a deeper analysis of its robustness
to a wider range of model mismatches and
external disturbances, such as time-varying
or unknown perturbations, could incorporate
more comprehensive disturbance rejection
strategies or adaptive mechanisms that improve
the controller’s resilience under various operating
conditions.

3. The simulation results, while promising, have not
been validated in real-time or on physical systems.
Future work could focus on the hardware
implementation of the proposed controller using
embedded systems.

4. The current controller aims to suppress chaos
and track Extension to Multi-Objective Control:
desired trajectories, but extending the design to
handle multi-objective control problems could
increase the applicability of the method in
real-world engineering problems.

5. Future work could investigate the application
of the proposed control method to practical
fractional-order systems, such as those found in
robotics, or power electronics or network systems.
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