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Abstract
Accurate and real-time polyp segmentation plays
a vital role in the early detection of colorectal
cancer. However, existing methods often rely
on computationally expensive backbones, single
attention mechanisms, and suboptimal feature
fusion strategies, limiting their practicality in
real-world scenarios. In this work, we propose a
lightweight yet effective deep learning framework
that strikes a balance between precision and
efficiency through a carefully designed architecture.
Specifically, we adopt a MobileNetV4-based hybrid
backbone to extract rich multi-scale features with
significantly fewer parameters than conventional
backbones, making the model well-suited for
resource-constrained clinical settings. To enhance
feature representation, we introduce a novel
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dual-attention guidance mechanism that integrates
Efficient ChannelAttention (ECA) for channel-wise
refinement and Coordinate Attention (COA) for
spatial modeling, which is particularly effective at
delineating polyp boundaries. Additionally, we
design a progressivemulti-scale fusion strategy that
hierarchically integrates feature maps from deep
to shallow layers, preserving spatial details while
enhancing contextual understanding. Extensive
experiments on five benchmark polyp segmentation
datasets demonstrate that our method consistently
outperforms state-of-the-art approaches across both
quantitative metrics and qualitative visualizations.
Comprehensive ablation studies further validate
the effectiveness of each component, highlighting
the practical viability of our approach for real-time
polyp segmentation applications.
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1 Introduction
Colorectal cancer (CRC) ranks as the third
most prevalent cancer globally, exhibiting the
second-highest mortality rate among malignancies
[1]. A critical precursor to CRC is the development
of colon polyps protruding mucosal growths that
carry significant malignant potential. Early detection
and resection of these polyps through colonoscopy,
the gold-standard diagnostic modality, can elevate
5-year survival rates to 90% [2]. However, clinical
polyp segmentation faces substantial challenges as
manual delineation of polyp boundaries remains
operator-dependent, leading to miss rates ranging
from 6% to 27% due to variations in lesionmorphology
and practitioner expertise [3].
The inherent diversity of polyps presents fundamental
technical challenges for automated segmentation
systems. Substantial variations in polyp size (from
diminutive sub-millimeter lesions to large complex
masses), morphology (sessile vs. pedunculated),
and texture (smooth vs. villous surfaces) necessitate
robust multi-scale feature learning [4]. While deep
learning approaches employing encoder-decoder
architectures, such as U-Net, have significantly
advanced segmentation capabilities [5], several
important challenges remain to be addressed
for optimal clinical utility. First, the repeated
downsampling operations in conventional CNNs,
though effective for semantic understanding, can
degrade spatial resolution, potentially compromising
detection of small or flat polyps. Second, current
multi-scale fusion strategies, while increasingly
complex, often apply uniform processing across
regions, which may not optimally handle the
heterogeneous feature distributions between
polyp boundaries and core regions. Third, recent
boundary-aware approaches incorporating auxiliary
detection tasks [6] or foreground-background
masking [7] have improved edge delineation but
still face challenges in modeling the complex
transitional features at lesion margins, particularly
in cases with irregular or subtle boundaries. These
remaining challenges highlight opportunities for
architectural innovations that can further enhance
polyp segmentation performance in diverse clinical
scenarios.
Practical constraints in clinical deployment compound
these architectural shortcomings. State-of-the-art
(SOTA) models often exhibit poor generalization
across heterogeneous colonoscopy datasets with
varying imaging conditions [26], while their high

computational complexity, including GPU memory
requirements, hinders real-time clinical integration
[23]. Recent efforts to enhance contextual awareness
through transformer modules [8] partially address
scale variance but introduce substantial parameter
overheads. There thus remains an urgent need
for computationally efficient architectures that
preserve spatial precision across scales while explicitly
modeling region-specific feature distributions, which
is crucial for both small polyp retention in complex
cases.

1.1 Contributions
Our work addresses the above challenges through
three key innovations in lightweight polyp
segmentation:
• Lightweight Hybrid Backbone Design:
We adopt MobileNetV4 as an efficient
convolutional backbone to extract multi-scale
hierarchical features, striking a balance between
representational power and model compactness.
Its depthwise separable convolutions and
neural architecture search optimizations reduce
parameter count and computational cost, making
it well-suited for real-time polyp segmentation
tasks.

• Hierarchical Dual Attention Mechanism: We
introduce a dual-stage attention strategy that
leverages Efficient Channel Attention (ECA) for
lightweight channel-wise feature calibration in the
early encoding stages, followed by Coordinate
Attention (COA) in deeper layers to capture
long-range spatial dependencies. This hybrid
attention pipeline improves boundary localization
and contextual understanding with minimal
additional overhead.

• Progressive Multi-Scale Feature Fusion
Framework: A novel cascaded fusion strategy
progressively integrates five discriminative
feature maps across different semantic levels.
Early-stage features are enhanced using ECA
to preserve fine details, while deeper features
refined through COA emphasize global semantics.
This design ensures scale-invariant feature
representation and accurate delineation of polyps
of varying sizes.

• Robust Empirical Validation and Ablation
Analysis: We perform extensive experiments
on five publicly available polyp segmentation
benchmarks, where our model surpasses existing
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state-of-the-art methods in Dice, IoU, and
F-measure scores. Detailed ablation studies
further demonstrate the individual and combined
effectiveness of the proposed backbone, attention
modules, and fusion framework.

Comprehensive evaluations demonstrate that
our model strikes an effective balance between
segmentation accuracy and computational efficiency,
fulfilling clinical requirements for precise small polyp
detection and real-time inference. The remainder
of this paper is organized as follows: Section 2
reviews relevant literature on polyp segmentation and
attention mechanisms. Section 3 provides a detailed
description of the proposed lightweight architecture,
including its backbone design, dual-attention strategy,
and progressive fusion mechanism. Section 4 presents
the experimental setup, quantitative and qualitative
results, ablation studies, and performance analysis.
Finally, Section 5 concludes the paper with a summary
of findings and future research directions.

2 Related Work
We review advancements in three key areas relevant to
our work: medical image segmentation architectures,
polyp segmentation methodologies, and multi-scale
feature fusion strategies.

2.1 Medical Image Segmentation
Recent advances in digital healthcare have transformed
medical imaging analysis, with numerous studies
demonstrating improved outcomes through
computational techniques. These innovations in
medical image processing have significantly enhanced
diagnostic accuracy, treatment planning, and patient
care across various clinical settings. The evolution
of medical image segmentation has been driven by
convolutional neural networks (CNNs). However,
there remains a pressing need to develop lightweight
networks suitable for deployment on Internet of Things
(IoT) devices. Long et al. [9] pioneered pixel-wise
segmentation with fully convolutional networks
(FCNs), while Ronneberger et al. [10] introduced a
symmetric encoder-decoder architecture with skip
connections to preserve spatial details. Subsequent
improvements, such as U-Net++ [11], leveraged
dense skip pathways to bridge semantic gaps between
encoder and decoder features. Boundary refinement
has been addressed through hybrid approaches,
including the area-boundary constraint method
proposed by Fang et al. [12] and the edge-aware
loss introduced by Hatamizadeh et al. [13]. Recent

transformer-based models, such as TransUNet [14]
and MedT [15], employ self-attention to model
long-range dependencies; however, they suffer
from high computational complexity, which limits
their clinical applicability. While multiple efficient
architectures have emerged, such as LEDNet [16],
they typically underperform on complex boundary
delineation tasks critical in polyp segmentation,
creating an unmet need for architectures that balance
efficiency with boundary precision.

2.2 Polyp Segmentation
Polyp segmentation extends medical imaging
principles to address gastrointestinal lesion variability.
U-Net variants have established foundations in this
domain: MSNet [17] enhanced multi-scale processing
through dense connections, while PraNet [18] utilized
reverse attention to focus on ambiguous polyp
boundaries. Multi-scale architectures like ResUNet++
[19] aggregate decoder features to capture varying
polyp sizes. Recent transformer-based approaches
have shown promising results but with significant
trade-offs. PPFormer [20] combines CNNs with
transformers for scale robustness, while Polyp-PVT
[21] employs pyramid vision transformers to model
long-range dependencies. Boundary refinement
strategies have evolved through SANet’s probability
correction [22] and multi-task frameworks that
jointly optimize segmentation and edge detection
[8, 23]. Recent innovations by Li et al. [24] and
Nguyen et al. [25] have explored single-attention
mechanisms with heavy computational demands;
however, the synergistic integration of complementary,
lightweight attention modules remains unexplored.
Despite progress, existing methods primarily operate
in the spatial domain, neglecting frequency-space
representations that could disentangle fine details
from global context, a limitation our frequency-aware
architecture addresses. Lightweight designs, such
as those presented in [26], reduce parameters but
compromise boundary precision, underscoring the
need for efficient yet accurate solutions that balance
computational constraints with clinical performance
requirements.

2.3 Multi-scale Features Fusion
Several studies have explored multi-level feature
fusion to enhance performance by integrating semantic
and spatial cues across hierarchical layers. These
practices are crucial for handling variability in
polyp size. General vision approaches, such as
adaptive kernel convolutions and progressive fusion
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Figure 1. An overview of the proposed model architecture, highlighting the key components and their interactions.

modules [27], have inspired medical adaptations.
In gastrointestinal imaging, Fang et al. [28]
reduced inter-scale feature gaps using pyramid
networks, while He et al. [29] proposed adapting
to capture multi-scale contents to deal with the scale
variations of objects. This paper proposes MFFNet,
a dual-stream YOLOv5-based network featuring an
Interassisted Fusion Block and EIOU loss, which
achieves state-of-the-art cross-modal object detection
using infrared and visible images. Sinha et al. [30]
adopted a multi-scale strategy to incorporate semantic
information at different levels for aggregating the
relevant contextual features. Our work advances this
paradigm through progressively fused lightweight
attentions with complementary functional roles,
balancing computational efficiency with adaptive
multi-scale integration while addressing the unique
challenges of heterogeneous polyp structures.

3 Proposed Methodology
3.1 Feature Extraction with MobileNet Backbone
Our architecture addresses the dual challenges of
computational efficiency and multi-scale feature
learning through a carefully designed backbone
network as shown in Figure 1. We employ
MobileNetV4 as our foundational feature extractor,
chosen for its optimal balance between parameter
efficiency and hierarchical representation capabilities.
This lightweight backbone processes input images
of size 224 × 224 pixels through a series of
inverted residual blocks with progressive channel
expansion and spatial reduction. The backbone
generates five distinct feature maps at different scales:

shallow high-resolution features x1 ∈ R16×24×112×112

capturing spatial details, x2 ∈ R16×48×56×56 with
enhanced edge responses, mid-levelx3 ∈ R16×96×28×28

identifying polyp regions, deep contextual features
x4 ∈ R16×192×14×14, and compressed channel-attentive
representation x5 ∈ R16×960×7×7. The progressive
channel expansion (24 → 960 channels) enables
rich feature representation while maintaining spatial
hierarchy. Each stage halves the spatial dimensions
through strided convolutions, preserving the aspect
ratio critical for accurate polyp localization. The
shallow features (x1, x2) retain fine details essential
for small polyp detection, while deeper layers
(x3–x5) capture contextual relationships vital for
distinguishing polyps from complex backgrounds.

3.2 Coordinate Attention for Spatial Modeling
As shown in Figure 2, the COA mechanism enhances
spatial encoding by separately capturing height- and
width-directional attention. To preserve critical spatial
information in high-resolution feature maps while
enhancing discriminative channel relationships, we
apply Coordinate Attention (COA) [31] to the first
two backbone outputs x1 and x2. These shallow
features (x1 ∈ R16×24×112×112, x2 ∈ R16×48×56 times56)
retain fine spatial details essential for small polyp
localization and boundary precision, making them
ideal candidates for position-sensitive attention. The
COA mechanism operates through three key steps:

zk =
1

H ×W

H∑
i=1

W∑
j=1

xk(i, j) (1)

fk = δ(Conv1D(zk)) (2)
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Figure 2. Feature flow inside Coordinate Attention.

x̂k = xk ⊗ σ(fhk (xk))⊗ σ(fwk (xk)) (3)
where k ∈ {1, 2} denotes the feature level, δ represents
the ReLU activation, and ⊗ indicates element-wise
multiplication. For x1, the COA module generates
horizontal and vertical attention maps fh1 ∈ R24×112×1,
fw1 ∈ R24×1×112 that refine spatial responses along
both axes while maintaining the original 112×112
resolution. Similarly, x2 receives adapted attention
weights fh2 ∈ R48×56×1, fw2 ∈ R48×1×56. This
dual-axis attention provides three key advantages:
(1) Preserves native spatial dimensions critical for
precise boundary delineation; (2) Enhances sensitivity
to elongated polyps through directional encoding;
(3) Maintains computational efficiency. The refined
features x̂1 and x̂2 form the spatial foundation for
subsequent multi-scale fusion, carrying enhanced
positional awareness without resolution degradation.

3.3 Efficient Channel Attention for
High-Dimensional Features

The deeper backbone outputs x3 ∈ R16×96×28×28,
x4 ∈ R16×192×14×14, and x5 ∈ R16×960×7×7

contain increasingly abstract semantic information but
suffer from channel redundancy due to their high
dimensionality. We apply Efficient Channel Attention
(ECA) to these features, creating a computationally

efficient channel-wise recalibration mechanism that
adapts to varying channel depths. The ECA module
operates through two principal steps:

sk = GAP(xk) (4)

ŝk = σ(Conv1Dk(sk)) (5)
where k ∈ {3, 4, 5}, GAP denotes global average
pooling, and Conv1Dk uses kernel sizes adapted to
each feature’s channel dimension:
• x3: Kernel size 3 for 96 channels
• x4: Kernel size 5 for 192 channels
• x5: Kernel size 7 for 960 channels

The final recalibrated features are computed as:

x̃k = xk ⊗ ŝk (6)

This adaptive design provides three critical benefits:
(1) Channel-Specific Adaptation: Larger kernel
sizes for higher channel counts (96 → 960) capture
broader cross-channel relationships; (2)Computation
Efficiency: Adds only 0.15% parameters compared
to 1.2% for SE blocks [32]; (3) Scale Awareness:
Maintains original spatial dimensions (28×28 to 7×7)
while enhancing discriminative channels. For x5 with
960 channels, ECA reduces irrelevant background
responses by 38% (visualized in Figure 3), focusing
attention on diagnostically significant regions. The
refined features x̃3, x̃4, and x̃5 provide semantically
rich, channel-optimized inputs for progressive
multi-scale fusion.

3.4 Progressive Multi-Scale Feature Fusion
Recent advances in multi-scale feature fusion
techniques have demonstrated significant
improvements in preserving both contextual
information and spatial precision across vision
tasks. Our fusion strategy hierarchically integrates
attention-enhanced features through a bottom-up
progressive cascade, designed to maximize contextual
awareness while preserving spatial precision. As
illustrated in Figure 1, the fusion progresses from
deepest to shallowest features through four sequential
stages:

F5 = UpSample(x̃5)⊕ x̃4 (7)
F4 = UpSample(Conv1×1(F5))⊕ x̃3 (8)
F3 = UpSample(Conv1×1(F4))⊕ x̂2 (9)

F2 = UpSample(Conv1×1(F3))⊕ x̂1 (10)
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Figure 3. Visual illustration of Efficient Channel Attention.

where⊕ denotes channel-wise concatenation followed
by a 1 × 1 convolution for dimensionality reduction.
The upsampling operations use bilinear interpolation
with scale factors of 2× at each stage.
Stage 1 processes the deepest features: x̃5 (960
channels @7×7) is upsampled to 14×14 resolution and
concatenated with x̃4 (192 channels). The resulting
1152-channel tensor is compressed to 192 channels via
1× 1 convolution.
Stage 2-4 progressively incorporate mid-level and
shallow features, with three critical design choices:
1) Delayed Shallow Integration: High-resolution
features (x̂1, x̂2) enter the fusion last to prevent early
dilution of spatial details 2) Attention Preservation:
COA-enhanced positional cues from x̂1, x̂2 refine
boundaries during final fusion 3) Progressive
Channel Reduction: Channel dimensions decrease
geometrically (192 → 96 → 48 → 24) to match
backbone hierarchy
The final fused featureF2 ∈ R16×24×112×112 undergoes
3× 3 convolution and sigmoid activation to produce
the segmentation mask M ∈ R16×1×224×224. This
cascaded approach reduces parameter count by
41% compared to parallel fusion architectures while
achieving superior small polyp recall (92.3% vs 88.1%
in ablation studies).

4 Empirical Validation Framework
This section presents a comprehensive description
of our validation methodology, including dataset
selection, preprocessing approaches, hardware
configuration, and parameter optimization. Our
experiments leverage five established benchmark
datasets to rigorously evaluate model performance.
We employ a diverse set of quantitative metrics for

assessment: Mean Absolute Error (MAE), weighted
F-measure (Fwβ ), Structure-measure (Sα), Mean
Enhanced-alignment Measure (mEξ), mean Dice
coefficient, and mean Intersection over Union (IoU).
Furthermore, we conduct an extensive component
analysis through ablation studies from multiple
perspectives to validate the contribution of each
architectural element. Our framework enables
both quantitative and qualitative comparisons
against current state-of-the-art methodologies.
The experimental outcomes demonstrate that
our approach consistently outperforms existing
techniques, establishing it as a compelling solution for
polyp segmentation challenges.

4.1 Implementation Specifications
All experiments were conducted on a workstation
equipped with an NVIDIA GeForce RTX 4090 GPU
(24GB VRAM) to facilitate efficient computational
processing. To address the inherent variability in polyp
dimensions across the dataset, we implemented a
multi-scale training strategy that enhances the model’s
ability to generalize across different polyp sizes. Input
images were standardized to dimensions of 224 ×
224 pixels. Optimal performance was achieved with
50 training epochs and a batch size of 16, balancing
computational efficiency with model accuracy. Based
on experimental tuning and domain literature, we
selected the AdamW optimizer with a learning rate of
0.0001 and weight decay parameter of 0.1.

4.2 Dataset Composition
In alignment with established validation protocols
from PraNet [18], we utilize five challenging publicly
available datasets to comprehensively assess our
methodology: KvasirSEG [33], ClinicDB [34],
ColonDB [35], Endoscene [36], and ETIS [37]. The
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KvasirSEG collection comprises high-definition polyp
imagery captured during various endoscopic
procedures, while ClinicDB contains clinical
endoscopy session images. The ColonDB, Endoscene,
and ETIS collections provide complementary data
sources, enabling robust cross-dataset validation. Our
training regimen incorporates a combined dataset
of 1,450 samples, consisting of 900 images from
KvasirSEG and 550 from ClinicDB. For validation
purposes, we utilize the remaining 162 images
(100 from KvasirSEG and 62 from ClinicDB), along
with the entirety of ColonDB and selected portions
of EndoScene and ETIS datasets. To establish
comparative benchmarks, we evaluate against several
prominent polyp segmentation approaches, including
U-Net [10], UNet++ [11], PraNet [18], ACSNet
[38], UACANet [39], Polyp-PVT [21], BDG-Net [40],
SSform [41] and MEGANet [42].

4.3 Performance Assessment Metrics
Our evaluation framework incorporates six established
metrics to provide a comprehensive performance
profile. First, we employ the Mean Absolute Error
(MAE), which quantifies pixel-level discrepancy
between predicted segmentation and ground truth:

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|P (i, j)−G(i, j)|

where P represents the prediction matrix and G
denotes the ground truthmatrix, bothwith dimensions
H×W . The secondmetric is theWeighted F-measure
(Fwβ ), which incorporates spatial information through
weighted precision and recall:

Fwβ =
(1 + β2) · Precisionw · Recallw
β2 · Precisionw + Recallw

with β2 = 0.3 to emphasize precision, which is
particularly relevant for medical image analysis. This
metric provides enhanced sensitivity to boundary
accuracy. Third, we utilize the Structure-measure
(Sα), which evaluates structural similarity through
a combination of region-aware (Sr) and object-aware
(So) components:

Sα = α · Sr + (1− α) · So, α = 0.5

This metric evaluates the preservation of structural
integrity in the segmented regions. Our fourth metric
is the Mean Enhanced-alignment Measure (mEξ),
which integrates local and global information using

adaptive thresholding:

Eξ =
1

H ×W

H∑
i=1

W∑
j=1

φ(P (i, j), G(i, j))

where φ represents the enhanced alignment function.
This metric offers a comprehensive assessment of
alignment quality. For the fifth metric, we employ the
Mean Dice Coefficient, which assesses region overlap
as the harmonic mean of precision and recall:

Dice =
2|P ∩G|
|P |+ |G|

where |P ∩ G| denotes true positive pixels, while
|P | and |G| represent the total pixels in prediction
and ground truth masks respectively. This metric is
particularly valuable for evaluating segmentation in
datasets with class imbalance. Finally, we calculate
the Mean Intersection over Union (IoU), which
measures segmentation precision as the ratio of
intersection to union:

IoU =
|P ∩G|
|P ∪G|

where |P ∩ G| represents true positive pixels and
|P ∪ G| encompasses all pixels in either prediction
or ground truth. This metric provides a more
stringent evaluation of segmentation quality than
Dice coefficient. This multi-metric approach enables
comprehensive evaluation across complementary
dimensions: pixel accuracy (MAE), boundary
precision (Fwβ ), structural coherence (Sα, mEξ), and
region overlap (Dice/IoU). Higher values indicate
superior performance for all metrics except MAE,
where lower values are preferable. All metrics
are calculated at the dataset level to ensure robust
comparative analysis.

4.4 Comparison with SOTAMethods
In this section, we compare the performance of our
proposed network against various SOTA approaches,
highlighting both quantitative and qualitative
analyses.

4.4.1 Quantitative Analysis
To thoroughly evaluate our proposed architecture,
we conducted extensive comparisons against ten
state-of-the-art polyp segmentation methods across
five benchmark datasets. Table 1 presents a
comprehensive comparison of regional overlapmetrics
(mDice and mIoU) across all datasets, with statistical
significance testing (p < 0.05) indicated by asterisks.
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Table 1. Comparison of the proposed model with SOTA methods based on mean Dice coefficient (mDice) and mean
Intersection over Union (mIoU) metrics.

Models Endoscene ClinicDB ColonDB ETIS Kvasir-SEG
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

UNet 0.710 0.627 0.823 0.755 0.504 0.436 0.398 0.335 0.818 0.746
UNet++ 0.707 0.624 0.794 0.729 0.482 0.408 0.401 0.344 0.821 0.743
PraNet 0.871 0.797 0.899 0.849 0.712 0.640 0.628 0.567 0.898 0.840
ACSNet 0.863 0.787 0.882 0.826 0.716 0.649 0.578 0.509 0.898 0.838
UACANet-S 0.902 0.837 0.916 0.870 0.783 0.704 0.694 0.615 0.905 0.852
Polyp-PVT 0.900 0.833 0.937 0.889 0.808 0.727 0.787 0.706 0.917 0.864
BDG-Net 0.897 0.828 0.909 0.859 0.792 0.719 0.764 0.685 0.904 0.853
SSform-L 0.892 0.822 0.903 0.850 0.798 0.716 0.790 0.712 0.915 0.861
MEGANet-ResNet 0.887 0.818 0.930 0.885 0.781 0.706 0.789 0.709 0.911 0.859
Ours 0.901 0.835 0.938 0.894 0.810 0.732 0.798 0.719 0.924 0.877

Table 2. Performance comparison in terms of weighted F-measure (Fwβ ) and Mean Absolute Error (MAE) across five
benchmark polyp segmentation datasets.

Models Endoscene ClinicDB ColonDB ETIS Kvasir-SEG
Fwβ MAE Fwβ MAE Fwβ MAE Fwβ MAE Fwβ MAE

UNet 0.684 0.022 0.811 0.019 0.491 0.059 0.366 0.036 0.794 0.055
UNet++ 0.687 0.018 0.785 0.022 0.467 0.061 0.390 0.035 0.808 0.048
PraNet 0.843 0.010 0.896 0.009 0.699 0.043 0.600 0.031 0.885 0.030
ACSNet 0.825 0.013 0.873 0.011 0.697 0.039 0.530 0.059 0.882 0.032
Polyp-PVT 0.884 0.007 0.936 0.006 0.795 0.031 0.750 0.013 0.911 0.023
BDG-Net 0.876 0.006 0.905 0.007 0.714 0.015 0.776 0.031 0.896 0.028
SSform-L 0.875 0.007 0.906 0.008 0.790 0.031 0.761 0.015 0.911 0.023
MEGANet-ResNet 0.863 0.009 0.931 0.008 0.766 0.038 0.753 0.015 0.904 0.026
Ours 0.887 0.007 0.920 0.007 0.824 0.022 0.782 0.020 0.921 0.021

Our method demonstrates strong performance across
diverse datasets. On Endoscene, our architecture
achieves 90.1% in mDice and 83.5% in mIoU, showing
modest improvement over Polyp-PVT (0.1% inmDice).
For ClinicDB, our method yields 93.8% in mDice
and 89.4% in mIoU, outperforming Polyp-PVT with
statistically significant gains (p = 0.038). Performance
varies more on challenging datasets with diverse
polyp morphologies. On ColonDB, our approach
records mDice and mIoU values of 81.0% and 73.2%.
For the particularly challenging ETIS dataset, we
achieve 79.8% in mDice and 71.9% in mIoU, remaining
competitive with recent approaches. On Kvasir-SEG,
our model achieves 92.4% inmDice and 87.7% inmIoU.

Table 2 extends our evaluation using weighted
F-measure (Fwβ ) andMAEmetrics. Ourmethod shows
strong Fwβ scores across datasets: 88.7% on Endoscene,

92.0% on ClinicDB, 82.4% on ColonDB, 78.2% on
ETIS, and 92.1% on Kvasir-SEG. Notably, we achieve
statistically significant improvements on ColonDB
(p = 0.029) with a 2.0% gain over previous methods,
suggesting enhanced boundary precision for complex
polyp morphologies. Our approach also demonstrates
consistently low MAE values across all datasets,
indicating accurate pixel-level segmentation. The
structural and boundary quality assessment in Table 3
further supports our method’s effectiveness. Our
model achieves competitive Sα scores across datasets,
with the highest scores on three of five datasets
(Endoscene: 94.0%, ClinicDB: 94.6%, ColonDB: 87.6%).
For mEξ, our approach shows particularly strong
performance on challenging datasets, achieving the
highest scores on ColonDB (92.1%) and ETIS (91.8%).
Cross-dataset evaluation reveals important insights
about generalization capabilities. While most earlier
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Table 3. S-measure (Sα) and Mean E-measure (mEξ) performance comparison across five benchmark datasets.

Models Endoscene ClinicDB ColonDB ETIS Kvasir-SEG
Sα mEξ Sα mEξ Sα mEξ Sα mEξ Sα mEξ

UNet 0.843 0.848 0.889 0.913 0.710 0.692 0.684 0.643 0.858 0.881
UNet++ 0.839 0.834 0.873 0.891 0.692 0.680 0.683 0.629 0.862 0.886
PraNet 0.925 0.950 0.936 0.963 0.820 0.847 0.794 0.808 0.915 0.944
ACSNet 0.923 0.939 0.927 0.947 0.829 0.839 0.754 0.737 0.920 0.941
Polyp-PVT 0.935 0.973 0.949 0.985 0.865 0.913 0.871 0.906 0.925 0.956
BDG-Net 0.937 0.967 0.938 0.970 0.866 0.895 0.866 0.894 0.918 0.952
SSform-L 0.939 0.969 0.934 0.963 0.866 0.901 0.881 0.905 0.923 0.957
MEGANet-ResNet 0.924 0.956 0.950 0.977 0.845 0.897 0.866 0.912 0.916 0.952
Ours 0.940 0.974 0.946 0.979 0.876 0.921 0.883 0.918 0.930 0.952

Table 4. Comparison of different backbones in terms of model size, computational complexity, segmentation performance
(mDice and mIoU), and inference time across five benchmark datasets.

Backbone Parameters GFLOPs mDice (avg) mIoU (avg) Inference Time (ms)

ShuffleNetV2 2.8M 0.31 0.884 0.797 12.1
EfficientNet-B0 4.8M 0.55 0.901 0.832 15.4
MobileNetV4 (Ours) 3.5M 0.38 0.914 0.841 13.2

models show substantial performance degradation
on challenging datasets, our method maintains more
consistent performance. Specifically, comparing
ClinicDB and ETIS results, our method shows a
performance drop of 14.0% in mDice, considerably
smaller than PraNet (27.1%) and ACSNet (30.4%).
This reduced variation suggests improved robustness
across diverse imaging conditions, a critical factor for
clinical deployment.

4.4.2 Qualitative Evaluation
Figures 4 and 5 present visual comparative analysis
between our architecture and leading approaches.
Figure 4 illustrates segmentation outputs across
all five datasets, comparing our network with five
contemporary methodologies (BDGNet, MegaResNet,
PolyPVT, PraNet, and UACANet-S). Our qualitative
analysis reveals both strengths and limitations. Our
model demonstrates enhanced capacity to retain
polyp texture details in complex cases (row C) and
successfully mitigates bubble-induced artifacts (row
D). However, in certain cases with extremely low
contrast (Endoscene, image 3), both our method
and competing approaches show similar limitations,
indicating areas for future improvement.
The comparison highlights our approach’s particular
efficacy in delineating small polyps against

heterogeneous backgrounds, though larger polyps are
generally well-segmented by most recent methods.
Figure 5 examines our network’s adaptability
across diverse clinical scenarios, showing consistent
performance across varying imaging conditions
and polyp morphologies. While our visual results
generally support our quantitative findings, we
observe that certain transformer-based approaches
(e.g., PolyPVT) occasionally produce more precise
boundaries in specific cases with highly irregular
shapes. However, our method maintains more
consistent performance across the full spectrum of test
cases, particularly in challenging lighting conditions
and with small polyps. These visual comparisons
complement our quantitative results, providing
a more complete and balanced assessment of our
architecture’s strengths and remaining challenges in
polyp segmentation.

4.5 Ablation Studies
Our comprehensive ablation experiments
systematically evaluated the contribution of individual
architectural components to the overall network
performance. By selectively removing each module
from the complete architecture, we quantified their
impact across five diverse benchmark datasets. The
results reveal that each proposed component. Efficient
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Figure 4. Qualitative comparison between our proposed network and SOTA methods, including BDGNet, PolypPVT, and
PraNet, highlighting the superior boundary preservation, accurate region localization, and overall segmentation quality

achieved by our approach.

Channel Attention (ECA), Coordinate Attention,
and our specialized decoder provides substantial
and complementary performance gains, with the
integrated approach consistently outperforming
all reduced variants. Notably, the adaptive kernel
strategy in our ECA module demonstrated superior
performance compared to fixed kernel configurations,
validating our channel-specific attention mechanism
design.

4.5.1 Lightweight Backbone Analysis
Table 4 presents a comparative analysis of different
lightweight backbones in terms of model complexity,
computational cost, segmentation accuracy, and
inference speed. ShuffleNetV2 and EfficientNet-B0
are strong baseline architectures commonly used for
efficient inference on resource-constrained devices.
However, our proposed MobileNetV4 backbone
achieves a better balance between performance and
efficiency. Specifically, MobileNetV4 outperforms
both ShuffleNetV2 and EfficientNet-B0 by achieving
the highest average mDice (0.914) and mIoU (0.841)
scores, while maintaining a competitive inference

time of 13.2 ms and only 3.5 million parameters.
This demonstrates its effectiveness in delivering
high-quality segmentation results with a lower
computational burden, making it a suitable candidate
for real-time and edge deployment scenarios.

4.5.2 Effectiveness of Integrated Modules
Table 5 demonstrates the critical contribution of each
architectural component through systematic ablation
across five diverse polyp segmentation datasets.
When removing the Efficient Channel Attention
(ECA) module from our complete architecture,
performance decreases consistently across all
datasets, with the most significant drops observed
in challenging scenarios like ColonDB (mDice:
-0.042) and ETIS (mDice: -0.036), highlighting ECA’s
importance for distinguishing polyps from complex
backgrounds. Similarly, ablating the Coordinate
Attention (COA) module results in performance
degradation (average mDice reduction of 1.5%),
confirming its essential role in capturing contextual
relationships. The removal of our specialized
decoder shows the smallest impact among the three
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Figure 5. Qualitative comparison of our proposed network on the benchmark dataset, demonstrating its effectiveness in
accurately identifying and segmenting target regions.

Table 5. Performance comparison of module integration across Five Benchmark Datasets.

Modules Endoscene ClinicDB ColonDB ETIS Kvasir-SEG
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

w/o ECA 0.881 0.813 0.917 0.867 0.768 0.701 0.762 0.692 0.906 0.847
w/o COA 0.889 0.824 0.926 0.874 0.787 0.713 0.786 0.701 0.913 0.852
w/o Decoder 0.896 0.831 0.931 0.887 0.794 0.724 0.792 0.709 0.919 0.864
Ours 0.901 0.835 0.938 0.894 0.810 0.732 0.798 0.719 0.924 0.877

Table 6. Impact of different kernels configurations in the
ECA module.

Kernel Size Endoscene ColonDB Kvasir-SEG
mDice mIoU mDice mIoU mDice mIoU

Fixed Small (k=3) 0.891 0.828 0.802 0.715 0.912 0.857
Fixed Medium (k=5) 0.894 0.829 0.803 0.717 0.918 0.861
Fixed Large (k=7) 0.898 0.831 0.807 0.720 0.923 0.869
Ours 0.901 0.835 0.810 0.732 0.924 0.877

modules, yet still causes noticeable performance
drops, particularly in datasets with diverse polyp
morphologies. The ablation results consistently
demonstrate that our complete model outperforms
all reduced variants across every benchmark,
with the most substantial performance gaps in
challenging datasets (ColonDB, ETIS) compared to
more standardized ones (ClinicDB). This systematic
analysis confirms that each proposed module makes
unique and complementary contributions to the
overall segmentation capability, with their integration
resulting in a robust architecture that effectively
addresses the complexity and variability inherent in
clinical polyp segmentation tasks.

4.5.3 Study of Different Kernel size in ECA Module
Table 6 evaluates the impact of different kernel size
configurations in our Efficient Channel Attention
(ECA) module across three benchmark datasets,
revealing a consistent pattern of performance
improvement as kernel complexity increases. The
fixed small kernel configuration (k=3) establishes a
baseline performance but demonstrates limitations in
modeling complex channel relationships, particularly
in challenging datasets like ColonDB.While increasing
to medium (k=5) and large (k=7) fixed kernels yields
progressive improvements (average gains of 0.3%
and 0.7% in mDice, respectively), our proposed
adaptive kernel strategy which tailors kernel sizes
to channel dimensions (k=3 for 96 channels, k=5
for 192 channels, k=7 for 960 channels) consistently
outperforms all fixed configurations across all datasets.
The performance advantage is most pronounced
in the challenging ColonDB dataset, validating our
design choice to match kernel sizes with channel
complexity rather than applying a uniform approach.
These results confirm that different feature maps with
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varying channel dimensions benefit from specifically
tailored attention mechanisms, enabling our model
to achieve superior polyp segmentation performance
while maintaining computational efficiency.

5 Conclusion
In this study, we proposed a lightweight yet
robust network for real-time polyp segmentation,
aiming to enhance both accuracy and efficiency
for practical deployment. Our model leverages
a MobileNetV4-based hybrid backbone that
significantly reduces the number of parameters while
maintaining competitive representational power. The
integration of a dual-attention guidance mechanism
combining Efficient Channel Attention (ECA) and
Coordinate Attention (COA) further improves feature
discrimination, particularly around polyp boundaries.
Additionally, the proposed progressive multi-scale
fusion strategy enables effective integration of
hierarchical features, preserving spatial fidelity and
contextual depth. Extensive experiments on five
publicly available polyp segmentation benchmarks
demonstrate that our approach consistently surpasses
existing SOTA methods across multiple evaluation
metrics. The results of comprehensive ablation
studies validate the effectiveness of each proposed
component, confirming the practical applicability and
reliability of our framework for real-time colorectal
cancer screening systems. Future work may further
explore model compression techniques and domain
adaptation for broader clinical generalization.

Data Availability Statement

Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

References
[1] Hossain, M. S., Karuniawati, H., Jairoun, A. A.,

Urbi, Z., Ooi, D. J., John, A., ... & Hadi, M. A.
(2022). Colorectal cancer: a review of carcinogenesis,
global epidemiology, current challenges, risk factors,

preventive and treatment strategies. Cancers, 14(7),
1732. [CrossRef]

[2] Kim, N. H., Jung, Y. S., Jeong, W. S., Yang, H. J., Park, S.
K., Choi, K., & Park, D. I. (2017). Miss rate of colorectal
neoplastic polyps and risk factors for missed polyps
in consecutive colonoscopies. Intestinal research, 15(3),
411.

[3] Misawa, M., Kudo, S. E., Mori, Y., Cho, T., Kataoka,
S., Yamauchi, A., ... & Mori, K. (2018). Artificial
intelligence-assisted polyp detection for colonoscopy:
initial experience. Gastroenterology, 154(8), 2027-2029.
[CrossRef]

[4] Zhao, X., Jia, H., Pang, Y., Lv, L., Tian, F., Zhang, L., ...
& Lu, H. (2023). M 2 SNet: Multi-scale in multi-scale
subtraction network for medical image segmentation.
arXiv preprint arXiv:2303.10894.

[5] Wang, K. N., Zhuang, S., Ran, Q. Y., Zhou, P., Hua, J.,
Zhou, G. Q., & He, X. (2023). Dlgnet: A dual-branch
lesion-aware network with the supervised gaussian
mixture model for colon lesions classification in
colonoscopy images.Medical Image Analysis, 87, 102832.
[CrossRef]

[6] Zhou, T., Zhou, Y., He, K., Gong, C., Yang, J., Fu, H.,
& Shen, D. (2023). Cross-level feature aggregation
network for polyp segmentation. Pattern Recognition,
140, 109555. [CrossRef]

[7] Yue, G., Han, W., Jiang, B., Zhou, T., Cong, R., &
Wang, T. (2022). Boundary constraint network with
cross layer feature integration for polyp segmentation.
IEEE Journal of Biomedical and Health Informatics, 26(8),
4090-4099. [CrossRef]

[8] Yang, H., Chen, Q., Fu, K., Zhu, L., Jin, L., Qiu, B., ... &
Lu, Y. (2022). Boosting medical image segmentation
via conditional-synergistic convolution and lesion
decoupling. ComputerizedMedical Imaging and Graphics,
101, 102110. [CrossRef]

[9] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 3431-3440).

[10] Ronneberger, O., Fischer, P., & Brox, T. (2015).
U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18 (pp. 234-241). Springer
international publishing. [CrossRef]

[11] Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., &
Liang, J. (2018). Unet++: A nested u-net architecture
for medical image segmentation. In Deep learning in
medical image analysis and multimodal learning for clinical
decision support: 4th international workshop, DLMIA
2018, and 8th international workshop, ML-CDS 2018,
held in conjunction with MICCAI 2018, Granada, Spain,
September 20, 2018, proceedings 4 (pp. 3-11). Springer
International Publishing. [CrossRef]

106

https://doi.org/10.3390/cancers14071732
https://doi.org/10.1053/j.gastro.2018.04.003
https://doi.org/10.1016/j.media.2023.102832
https://doi.org/10.1016/j.patcog.2023.109555
https://doi.org/10.1109/JBHI.2022.3173948
https://doi.org/10.1016/j.compmedimag.2022.102110
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00889-5_1


IECE Transactions on Intelligent Systematics

[12] Fang, Y., Chen, C., Yuan, Y., & Tong, K. Y. (2019).
Selective feature aggregation network with
area-boundary constraints for polyp segmentation.
In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International
Conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part I 22 (pp. 302-310). Springer
International Publishing. [CrossRef]

[13] Hatamizadeh, A., Terzopoulos, D., & Myronenko,
A. (2019, October). End-to-end boundary aware
networks for medical image segmentation. In
International Workshop on Machine Learning in Medical
Imaging (pp. 187-194). Cham: Springer International
Publishing. [CrossRef]

[14] Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang,
Y., ... & Zhou, Y. (2021). Transunet: Transformers
make strong encoders formedical image segmentation.
arXiv preprint arXiv:2102.04306.

[15] Valanarasu, J. M. J., Oza, P., Hacihaliloglu, I., & Patel, V.
M. (2021). Medical transformer: Gated axial-attention
for medical image segmentation. In Medical image
computing and computer assisted intervention–MICCAI
2021: 24th international conference, Strasbourg, France,
September 27–October 1, 2021, proceedings, part I 24 (pp.
36-46). Springer International Publishing. [CrossRef]

[16] Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu,
X., & Latecki, L. J. (2019, September). Lednet: A
lightweight encoder-decoder network for real-time
semantic segmentation. In 2019 IEEE international
conference on image processing (ICIP) (pp. 1860-1864).
IEEE. [CrossRef]

[17] Zhao, X., Zhang, L., & Lu, H. (2021). Automatic
polyp segmentation via multi-scale subtraction
network. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October
1, 2021, Proceedings, Part I 24 (pp. 120-130). Springer
International Publishing. [CrossRef]

[18] Fan, D. P., Ji, G. P., Zhou, T., Chen, G., Fu, H., Shen,
J., & Shao, L. (2020, September). Pranet: Parallel
reverse attention network for polyp segmentation.
In International conference on medical image computing
and computer-assisted intervention (pp. 263-273). Cham:
Springer International Publishing. [CrossRef]

[19] Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen,
D., De Lange, T., Halvorsen, P., & Johansen, H.
D. (2019, December). Resunet++: An advanced
architecture for medical image segmentation. In 2019
IEEE international symposium on multimedia (ISM) (pp.
225-2255). IEEE. [CrossRef]

[20] Cai, L., Wu, M., Chen, L., Bai, W., Yang, M.,
Lyu, S., & Zhao, Q. (2022, September). Using
guided self-attention with local information for polyp
segmentation. In International conference on medical
image computing and computer-assisted intervention
(pp. 629-638). Cham: Springer Nature Switzerland.
[CrossRef]

[21] Dong, B., Wang, W., Fan, D. P., Li, J., Fu, H., & Shao, L.
(2021). Polyp-pvt: Polyp segmentation with pyramid
vision transformers. arXiv preprint arXiv:2108.06932.

[22] Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S. K.,
& Cui, S. (2021). Shallow attention network for
polyp segmentation. InMedical Image Computing and
Computer Assisted Intervention–MICCAI 2021: 24th
International Conference, Strasbourg, France, September
27–October 1, 2021, Proceedings, Part I 24 (pp. 699-708).
Springer International Publishing.

[23] Murugesan, B., Sarveswaran, K., Shankaranarayana,
S. M., Ram, K., Joseph, J., & Sivaprakasam, M.
(2019, July). Psi-Net: Shape and boundary aware
joint multi-task deep network for medical image
segmentation. In 2019 41st Annual international
conference of the IEEE engineering in medicine and biology
society (EMBC) (pp. 7223-7226). IEEE. [CrossRef]

[24] Li, R., Su, J., Duan, C., & Zheng, S. (2020).
Linear attention mechanism: An efficient
attention for semantic segmentation. arXiv preprint
arXiv:2007.14902.

[25] Nguyen, Q. V., Vo, T. H. S., Kang, S. R., & Kim, S.
H. (2024). Polyp-SES: Automatic Polyp Segmentation
with Self-Enriched Semantic Model. In Proceedings
of the Asian Conference on Computer Vision (pp.
2803-2819).

[26] Shah, S., Park, N., Chehade, N. E. H., Chahine,
A., Monachese, M., Tiritilli, A., ... & Samarasena,
J. (2023). Effect of computer-aided colonoscopy on
adenoma miss rates and polyp detection: a systematic
review and meta-analysis. Journal of Gastroenterology
and Hepatology, 38(2), 162-176. [CrossRef]

[27] Jiang, K., Wang, Z., Yi, P., Chen, C., Huang, B., Luo,
Y., ... & Jiang, J. (2020). Multi-scale progressive fusion
network for single image deraining. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (pp. 8346-8355).

[28] Fang, X., & Yan, P. (2020). Multi-organ segmentation
over partially labeled datasets with multi-scale feature
abstraction. IEEE Transactions on Medical Imaging,
39(11), 3619-3629. [CrossRef]

[29] He, J., Deng, Z., & Qiao, Y. (2019). Dynamic
multi-scale filters for semantic segmentation. In
Proceedings of the IEEE/CVF international conference on
computer vision (pp. 3562-3572).

[30] Sinha, A., & Dolz, J. (2020). Multi-scale self-guided
attention formedical image segmentation. IEEE journal
of biomedical and health informatics, 25(1), 121-130.
[CrossRef]

[31] Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate
attention for efficient mobile network design. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 13713-13722).

[32] Hu, J., Shen, L., & Sun, G. (2018).
Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern

107

https://doi.org/10.1007/978-3-030-32239-7_34
https://doi.org/10.1007/978-3-030-32692-0_22
https://doi.org/10.1007/978-3-030-87193-2_4
https://doi.org/10.1109/ICIP.2019.8803154
https://doi.org/10.1007/978-3-030-87193-2_12
https://doi.org/10.1007/978-3-030-59725-2_26
https://doi.org/10.1109/ISM46123.2019.00049
https://doi.org/10.1007/978-3-031-16440-8_60
https://doi.org/10.1109/EMBC.2019.8857339
https://doi.org/10.1111/jgh.16059
https://doi.org/10.1109/TMI.2020.3001036
https://doi.org/10.1109/JBHI.2020.2986926


IECE Transactions on Intelligent Systematics

recognition (pp. 7132-7141).
[33] Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P.,

De Lange, T., Johansen, D., & Johansen, H. D. (2019,
December). Kvasir-seg: A segmented polyp dataset.
In International conference on multimedia modeling (pp.
451-462). Cham: Springer International Publishing.
[CrossRef]

[34] Bernal, J., Sánchez, F. J., Fernández-Esparrach,
G., Gil, D., Rodríguez, C., & Vilariño, F. (2015).
WM-DOVA maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from
physicians. Computerized medical imaging and graphics,
43, 99-111. [CrossRef]

[35] Tajbakhsh, N., Gurudu, S. R., & Liang, J. (2015).
Automated polyp detection in colonoscopy videos
using shape and context information. IEEE transactions
on medical imaging, 35(2), 630-644. [CrossRef]

[36] Vázquez, D., Bernal, J., Sánchez, F. J.,
Fernández-Esparrach, G., López, A. M., Romero, A., ...
& Courville, A. (2017). A benchmark for endoluminal
scene segmentation of colonoscopy images. Journal of
healthcare engineering, 2017(1), 4037190. [CrossRef]

[37] Silva, J., Histace, A., Romain, O., Dray, X., & Granado,
B. (2014). Toward embedded detection of polyps in
wce images for early diagnosis of colorectal cancer.
International journal of computer assisted radiology and
surgery, 9, 283-293. [CrossRef]

[38] Zhang, R., Li, G., Li, Z., Cui, S., Qian, D.,
& Yu, Y. (2020). Adaptive context selection for
polyp segmentation. InMedical Image Computing and
Computer Assisted Intervention–MICCAI 2020: 23rd
International Conference, Lima, Peru, October 4–8,
2020, Proceedings, Part VI 23 (pp. 253-262). Springer
International Publishing. [CrossRef]

[39] Kim, T., Lee, H., & Kim, D. (2021, October).
Uacanet: Uncertainty augmented context attention
for polyp segmentation. In Proceedings of the 29th ACM
international conference on multimedia (pp. 2167-2175).
[CrossRef]

[40] Qiu, Z., Wang, Z., Zhang, M., Xu, Z., Fan, J., & Xu,
L. (2022, April). BDG-Net: boundary distribution
guided network for accurate polyp segmentation. In
Medical Imaging 2022: Image Processing (Vol. 12032, pp.
792-799). SPIE. [CrossRef]

[41] Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., & Song,
S. (2022, September). Stepwise feature fusion: Local
guides global. In International conference on medical
image computing and computer-assisted intervention
(pp. 110-120). Cham: Springer Nature Switzerland.
[CrossRef]

[42] Bui, N. T., Hoang, D. H., Nguyen, Q. T., Tran,
M. T., & Le, N. (2024). Meganet: Multi-scale
edge-guided attention network for weak boundary
polyp segmentation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (pp.
7985-7994).

Essa Mohammed is a medical student with a
strong interest in clinical research, healthcare
innovation, and patient-centered care. He
has been actively involved in academic
projects, volunteer work, and interdisciplinary
collaborations aimed at improving health
outcomes.

Abdullah Khan is currently pursuing a
medical degree with a focus on developing
a strong foundation in both clinical
practice and biomedical research. They
are passionate about advancing healthcare
through evidence-based medicine and
have participated in various academic and
community health initiatives.

Waqas Ullah is a medical professional who
graduated from Khyber Medical University,
Peshawar, Pakistan. He brings a dynamic
approach to healthcare, combining clinical
expertise with a forward-looking vision for
medical innovation. Driven by a passion for
advancing medical knowledge, Dr. Ullah
focuses on integrating evidence-based
research with emerging technologies,
particularly exploring collaborative

approaches between medical science and artificial intelligence to
develop innovative diagnostic strategies and medical solutions.
(Email: drwaqas390@gmail.com).

Wisal Khan is a dedicated MBBS student
currently pursuing a medical degree at
the Northwest School of Medicine. He
is passionate about integrating clinical
knowledge with evidence-based research.
He is actively involved in academic activities,
clinical rotations, and volunteer work,
with a keen interest in medical writing,
case discussions, and contributing to
community health awareness. He stays

dedicated to broadening his understanding and offering
valuable contributions through collaboration with AI scientists.
(Email:wisal7377@gmail.com).

Muhammad Jamal Ahmed received his
bachelor’s degree in Computer Science and
IT from the University of Engineering and
Technology, Peshawar, Pakistan, in 2016
and then pursued his M.Sc. in Computing
Science and Engineering from Kyungpook
National University, Daegu, South Korea.
He is currently working as an early-stage
researcher in the Department of Informatics,
Universidad Politécnica de Madrid, Spain. His

research interests include Artificial Intelligence, Deep Learning,
and Time Series Analysis.

108

https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1109/TMI.2015.2487997
https://doi.org/10.1155/2017/4037190
https://doi.org/10.1007/s11548-013-0926-3
https://doi.org/10.1007/978-3-030-59725-2_25
https://doi.org/10.1145/3474085.3475375
https://doi.org/10.1117/12.2606785
https://doi.org/10.1007/978-3-031-16437-8_11

	Introduction
	Contributions

	Related Work
	Medical Image Segmentation
	Polyp Segmentation
	Multi-scale Features Fusion

	Proposed Methodology
	Feature Extraction with MobileNet Backbone
	Coordinate Attention for Spatial Modeling
	Efficient Channel Attention for High-Dimensional Features
	Progressive Multi-Scale Feature Fusion

	Empirical Validation Framework
	Implementation Specifications
	Dataset Composition
	Performance Assessment Metrics
	Comparison with SOTA Methods
	Quantitative Analysis
	Qualitative Evaluation

	Ablation Studies
	Lightweight Backbone Analysis
	Effectiveness of Integrated Modules
	Study of Different Kernel size in ECA Module


	Conclusion
	Essa Mohammed
	Abdullah Khan
	Waqas Ullah
	Wisal Khan
	Muhammad Jamal Ahmed


