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Abstract

This study presents an intelligent automated system
for real-time detection and classification of tomato
diseases using a Convolutional Neural Network
(CNN) integrated within an Internet of Things
(IoT) based unmanned ground vehicle (UGV). The
CNN was trained and evaluated using a dataset
comprising over 20,000 images of tomato leaves
categorized into ten distinct diseases—Late Blight,
Early Blight, Septoria Leaf Spot, Tomato Yellow
Leaf Curl Virus, Bacterial Spot, Target Spot, Tomato
Mosaic Virus, Leaf Mold, Spider Mites Two-Spotted
Spider Mite, Powdery Mildew—and healthy leaves.
The developed CNN architecture, optimized for
lightweight deployment on edge devices like
Raspberry Pi 4, achieved an overall accuracy
of approximately 83%, with notable variations

across classes in precision, recall, and Fl-score.

Specifically, high precision scores (above 80% ) were
obtained for diseases such as Bacterial Spot, Late
Blight, and Tomato Yellow Leaf Curl Virus, while
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moderate scores in diseases exhibiting subtle visual
symptoms underscored areas for future refinement.
The UGV autonomously navigates tomato fields,
captures high-resolution images of leaves, and
conducts on-site real-time disease classification,
significantly reducing the labor, human error, and
time associated with traditional manual inspections.
Comprehensive quantitative analyses, including
confusion matrices and visual assessments of
classified samples, validate the practical viability
and robustness of the proposed system, although
certain misclassifications highlight opportunities
to enhance training data diversity and model
generalizability in future work. The integration of
deep learning and IoT technologies demonstrated
in this study substantially advances precision
agriculture, improving disease management
practices and promoting sustainable agricultural
productivity.

Keywords: automated systems, agricultural robotics,
internet of things (IoT'), deep learning, tomato disease
detection, raspberry Pi 4.

1 Introduction

The global agriculture industry is undergoing
significant transformations driven by the rapid
development of the Internet of Things (Iol) and
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advanced technological integration. IoI has enabled
substantial improvements in agricultural efficiency,
cost reductions, service accessibility, and operational
management, even in remote or resource-limited
regions [1]. Particularly in precision agriculture, IoT
applications such as real-time monitoring, greenhouse
automation, and predictive analytics have gained
momentum, allowing for optimized and sustainable
cultivation of diverse crops, including vineyards,
bananas, olives, and corn [2]. However, despite the
evident benefits, several challenges remain, especially
related to network infrastructure, data management,
and the adoption of open-source IoI technologies in
agriculture [3].

The need for automation in agriculture has intensified
due to rising global food demands, population
growth, and urban migration, which have reduced
available agricultural workforce and land area [4].
This scenario has propelled the agricultural sector
towards increased reliance on artificial intelligence
(AI) and robotic systems. Recent advancements
in machine learning (ML), especially deep learning
(DL), have significantly improved automation in tasks
such as disease detection, weed-crop discrimination,
fruit counting, and land cover classification [5].
Convolutional neural networks (CNNSs), a particular
DL architecture, have consistently demonstrated
superior accuracy over traditional ML methods like
Random Forest (RF) and Support Vector Machine
(SVM) across various agricultural applications [6].

Despite these advancements, agricultural practices in
developing countries remain heavily dependent on
labor-intensive methods requiring continuous manual
monitoring, highlighting a critical gap in technological
adoption and automation capabilities. To address this
gap, recent studies propose IoI-driven agricultural
systems that automate critical processes based
on environmental conditions, providing real-time
feedback directly to farmers through smartphones and
cloud platforms [7]. Moreover, the rise of IoI-enabled
smart agriculture ecosystems, incorporating
technologies like wireless sensor networks, big
data analytics, and cloud computing, signifies a
broader trend towards sustainable agricultural
practices designed to address food security challenges
arising from population growth, resource scarcity,
and environmental unpredictability [8].

The urgency to mitigate the impacts of agricultural
diseases, which substantially threaten global
food production, further accentuates the need

for technological solutions. Plant viruses alone
account for significant economic losses and pose
risks to environmental health, food security, and
supply chain stability [9]. Consequently, developing
autonomous, real-time disease detection systems
employing advanced CNN models embedded in
IoI-based robotic platforms presents a promising
direction. These systems offer enhanced accuracy,
operational efficiency, and scalability, making disease
management practices more robust and sustainable,
particularly for high-value and vulnerable crops like
tomatoes [10].

Automated plant disease detection, particularly leaf
disease identification, has increasingly emerged as
an essential area of research due to its potential
economic impact on agricultural productivity [11].
Techniques leveraging multispectral and hyperspectral
imaging combined with advanced machine learning
(ML) and deep learning (DL) algorithms, such as
Convolutional Neural Networks (CNNs), ResNet, and
VGG architectures, have proven effective in accurately
identifying leaf diseases across various plant species.
These computational methods typically outperform
traditional ML classifiers, including Support Vector
Machines (SVMs) and Random Forests (RF), offering
significant accuracy improvements and demonstrating
robust performance metrics like precision, recall, and
F1-score [12].

Early and precise detection of crop diseases using DL
methods has shown remarkable success in real-time
agricultural applications. Notably, advanced CNN
models, when integrated with powerful embedded
hardware platforms have achieved impressive
real-world classification accuracies, validating their
suitability for field deployment [13]. Despite these
technological advancements, several open issues
persist, including model generalizability across
diverse crops, computational efficiency for real-time
inference, and the scarcity of comprehensive, publicly
available datasets. Addressing these gaps requires
datasets that encompass various crop types, disease
classes, and environmental conditions to enhance
the robustness and effectiveness of disease detection
models [14].

In response to the necessity for more efficient

computational performance suitable for edge
computing  environments,  researchers have
developed lightweight CNN architectures.  For

instance, the VGG-ICNN model has demonstrated
outstanding results. Its significantly reduced
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number of parameters positions this architecture
as an optimal solution for real-time disease
detection tasks in resource-constrained agricultural
environments [15]. Concurrently, advancements in
agricultural autonomous navigation technologies,
tailored for the complexity and unpredictability of
farming environments, underline the importance
of integrating precise, efficient navigation systems
into automated agricultural equipment. Future
research in this domain highlights key trends such as
multi-dimensional perception, selective autonomous
navigation technologies, multi-agent cooperative
systems, and fault diagnostic capabilities, all essential
to enhancing the practicality and reliability of
autonomous agricultural vehicles [16].

IoI-based solutions offer promising approaches
to tackling these challenges through innovative
applications such as smart irrigation, precision
farming, crop  health  monitoring, pest
management, agricultural drones, and supply
chain management [17]. Nevertheless, widespread
adoption of IoT in agriculture necessitates addressing
fundamental issues related to connectivity, scalability,
data privacy, cost management, and enhancing
awareness among stakeholders. Effective collaboration
between farmers, technology providers, academia, and
policymakers is crucial to unlocking the full potential
of Iol-driven agricultural practices, ultimately
contributing to sustainable agricultural productivity
and resilience amidst global challenges such as climate
change and resource scarcity [18].

This study proposes an autonomous, intelligent
system leveraging CNNs integrated with IoI devices
(a Raspberry Pi 4-powered unmanned ground
vehicle, UGV) for real-time tomato disease detection.
The CNN model is trained on a publicly available
dataset consisting of over 20,000 images capturing

ten common tomato diseases and healthy plants [19].
The developed system achieves robust disease
classification accuracy and near real-time performance
suitable for practical agricultural deployment,
addressing the previously mentioned limitations of
traditional methods.

The contributions of this work include:

e Designing a low-cost Unmanned Ground Vehicle
(UGV) specifically for tomato disease detection
tasks, enabling accessibility and practical
feasibility for small-scale farmers.

e Developing a computationally efficient and robust
Convolutional Neural Network (CNN) model
capable of accurately identifying and classifying
major tomato leaf diseases.

e Integrating Iol' and edge-computing technologies
by deploying the developed CNN model onto
a Raspberry Pi 4-based UGV, enabling near
real-time disease identification and classification
with minimal computational resources.

e Successfully identifying and classifying major
tomato diseases, thus demonstrating the system'’s
potential applicability in precision agriculture.

The remainder of this paper is structured as follows:
Section 2 presents detailed methodology and system
architecture; Section 3 reports experimental results
and discussions, followed by concluding remarks and
suggestions for future work in Section 4.

2 Methodology

This section details the systematic approach taken to
develop, train, evaluate, and deploy the intelligent
automated tomato disease detection system. The
methodology includes Hardware Description
and Integration, dataset description, CNN model

Table 1. Key hardware components and specifications.

Component Specification Purpose
Raspberry Pi 4 Model B ARM Cortex-A72 Quad-Core 1.5 GHz CPU, 4GB RAM, CNN inference, image capturing, and
Bluetooth 5.0, Dual-band Wi-Fi (2.4 GHz/5 GHz) cloud communication
ESP32 Microcontroller Dual-core, 240 MHz, Integrated Wi-Fi and Bluetooth (BLE) Motor control, sensor interfacing, obstacle
avoidance
Web Camera A4Tech 925HD, Resolution: 1920x1080 pixels, 30 fps Capturing high-resolution leaf images

Ultrasonic Sensor
8-Channel Relay Module
DC Motors

Buck Converters

DC Battery
Mechanical Frame and Tires

12V, 7Ah rechargeable battery

Waterproof, Detection range: up to 60 cm

8 separate relay switches, 5V DC operating voltage
8 motors, Operating voltage: 12V DC

Input: 12V DC, Output: 5V DC, Max Current: 3A

Custom-made frame, 8 robotic tires, and 2 shock absorbers

Real-time obstacle detection
Control and isolation of DC motors
Robot mobility and navigation
Voltage  regulation  and
management

Primary power source for field operations
Robust navigation through agricultural
fields

power
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architecture, model training, performance evaluation
metrics, and system implementation.

2.1 Hardware Description

A low-cost autonomous UGV was designed featuring
a Raspberry Pi 4 as the computational core, an
ESP32 microcontroller for motor and sensor control,
ultrasonic distance sensors for obstacle avoidance, and
a high-resolution web camera (A4Tech 925HD) for
image capturing. Table 1 provides the summary of the
key hardware components and their specifications.

Figure 1 presents a block diagram showing the
relationship between different hardware components.
The block diagram depicts a robotic system integrating
various sensors and control units. At the core,
an ESP32 microcontroller connects to a relay that
controls motors, facilitating motion. The ESP32
receives inputs from an ultrasonic sensor for distance
measurement and two cameras for visual feedback.
Power is supplied to the entire system, including
the ESP32, cameras, and Raspberry Pi 4. The
Raspberry Pi 4 processes additional camera data,
enhancing visual and computational capabilities. This
configuration allows the robot to navigate, capture
real-time data, and interact with its environment
through sensor feedback and motor control, ensuring
precise operation.

Waterprool Ultrasonic
Sensor (5V)

Camera

|

— RaspBerry Pi 4 ‘

| IR |

ESP32

Power Supply

Camera ‘

ESP32

8§ Channel Relay Module
V)

DC Motors

-

i

Figure 1. Block diagram of the robot.

Figure 2 shows the detailed structural design of the
Robot. The robot is meant especially for use in
agriculture for tomato disease detection. Emphasizing
stability and adaptability, the 8x8 robotic car design
lets it negotiate easily in agricultural fields. Equipped
with shock absorbers and dampers, the robot reduces
the effect of uneven terrain, therefore enabling smooth
mobility that protects the delicate onboard equipment

vital for disease diagnosis. Small tires help the
robot to be more maneuverable and to minimize soil
compaction so it may pass exactly between rows of
tomato plants.

Figure 2. Structure of the robot.

2.2 Dataset Description

The CNN model was trained and evaluated on a
publicly available Tomato Leaf Disease Classification
dataset, comprising over 20,000 labeled images across
ten distinct tomato diseases and one healthy class:
Late Blight, Early Blight, Septoria Leaf Spot, Tomato
Yellow Leaf Curl Virus, Bacterial Spot, Target Spot,
Tomato Mosaic Virus, Leaf Mold, Spider Mites
Two-Spotted Spider Mite, Powdery Mildew, and
Healthy Leaves. Images were captured from diverse
environmental conditions, including both controlled
laboratory settings and natural outdoor environments.
Dataset images were resized to a uniform resolution
of 128x128 pixels for optimal computational efficiency
and consistency in training and inference.

2.3 CNN Model Architecture

A lightweight CNN model architecture was
developed for computational efficiency suitable
for deployment on resource-constrained edge devices.
The model consists of four convolutional layers with
increasing filter depths (32, 64, 128, and 256 filters
respectively), each followed by batch normalization
and ReLU activation functions. Then, there are max
pooling layers following convolutional blocks for
dimensionality reduction. The global average pooling
layer is used for minimizing overfitting and reducing
model complexity. Fully connected dense layers are
used with dropout regularization and final dense layer
for multi-class classification into 11 categories using
softmax activation. Figure 3 presents the detailed
CNN model architecture summary, highlighting layer
types, dimensions, and parameter count clearly.
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Figure 3. Model summary.

2.4 Training and Evaluation Procedure

The dataset was split into 80% training and
20% validation subsets. The CNN was trained
using categorical cross-entropy loss, the Adam
optimizer (learning rate 0.001), and trained over 15
epochs. Model performance was evaluated using
comprehensive quantitative metrics, including
accuracy, precision, recall, F1-score, and a confusion
matrix for detailed class-wise analysis. The inference
speed was benchmarked against MobileNetV2 to
validate real-time performance.

2.5 System Operation Workflow

Figure 4 presents the operational workflow of the
system. The system enables semi-autonomous
navigation through agricultural fields, capturing
high-resolution tomato leaf images, which are resized
to 128x128 pixels onboard. A real-time CNN
model performs disease classification onsite, with
the results uploaded to Firebase cloud storage.
These classification results are then displayed via
user-friendly mobile or web interfaces, ensuring
accessibility for end-users.
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Figure 4. Operational flowchart.

3 Results and Discussion

This section presents a detailed evaluation of the
proposed intelligent automated tomato disease
detection system, focusing on the developed CNN
model’s performance metrics and the robot’s
operational efficacy.

The proposed lightweight CNN model demonstrated
strong classification capabilities, achieving an overall
accuracy of approximately 83%. The performance
was further comprehensively assessed using precision,
recall, and Fl-score, providing detailed class-wise
insights into the model’s effectiveness. Figure 5 shows
the precision, recall, and F1-score for each class.

Specifically, the CNN model achieved precision
exceeding 80% for diseases such as Bacterial Spot,
Late Blight, and Tomato Yellow Leaf Curl Virus,
demonstrating robust performance in distinguishing
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Precision, Recall, and F1 Score for Each Class
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Figure 5. Precision, Recall, and F1 Score.

clearly visible diseases. However, relatively moderate
performance was observed for diseases such as Spider
Mites Two-Spotted Spider Mite and Target Spot,
highlighting challenges in recognizing subtle visual
symptoms. These results underscore the need for
further dataset diversification and targeted model
enhancements.

Figure 6 illustrates the training accuracy and loss
curves over 15 epochs, showing stable convergence
behavior. The model accuracy steadily increased,
whereas the loss consistently decreased, indicating
successful learning and minimal overfitting.

Training Progress

— Accuracy
— Loss

0.8 1

Value

0.6 1

0.4 1

0.2 1

o] 2 4 6 8 10 12 14
Epochs

Figure 6. Training accuracy and loss.

Figure 7 presents the confusion matrix. To gain
deeper insights into model performance, a normalized
confusion matrix was evaluated. It revealed robust
class predictions for "healthy" leaves, with minimal
misclassification. However, significant confusion was
noted between visually similar disease classes (e.g.,
Leaf Mold and Target Spot), guiding areas for future
improvement.

The real-time applicability was evaluated by
measuring the inference time per image. The
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Figure 7. Confusion matrix.

proposed lightweight CNN model exhibited an
average inference time of 0.101 seconds per image,
outperforming the MobileNetV2 benchmark, which
recorded 0.111 seconds per image. Hence, the
designed model demonstrated approximately 9%
faster inference, confirming its suitability for near
real-time field deployment.

Figure 8 presents sample visual classification outputs
obtained from the CNN model. The model produced
accurate classifications for visually distinct diseases,
as shown, whereas subtle cases posed challenges,
aligning closely with confusion matrix results.

T Early_ght
P Early_blgh

Figure 8. Classified images.

The low-cost UGV platform demonstrated effective
operational capabilities. Equipped with an 8-channel
relay module for motor control and a waterproof
Ultrasonic Sensor for obstacle detection, the robot
navigated test environments smoothly, maintaining
stable performance in controlled field trials.

The

integration of energy-efficient hardware
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components, such as Raspberry Pi 4 and buck
converters, significantly enhanced energy efficiency
during robotic operation [20]. This design ensures
lower energy consumption, enhancing system
sustainability and economic viability for small-scale
farmers.

Despite promising results, limitations exist, including
occasional misclassifications between visually similar
disease classes. = Future improvements involve
enhancing dataset diversity, optimizing CNN
architecture further, and conducting more extensive
field trials for improved reliability and generalizability.

4 Conclusion

This study presented an intelligent, automated
tomato disease detection system combining a
lightweight Convolutional Neural Network (CNN)
with a low-cost IoI-based unmanned ground vehicle
(UGV). The developed CNN model was trained on
a publicly available dataset of over 20,000 tomato
leaf images and successfully classified ten common
tomato diseases and healthy leaves with an overall
accuracy of approximately 83%. Comprehensive
quantitative evaluations, including precision, recall,
F1-score, and confusion matrix analysis, demonstrated
strong performance for diseases with distinct
visual features (precision exceeding 80%), while
highlighting classification challenges among diseases
exhibiting subtle symptom variations. Real-time
applicability was demonstrated by achieving an
average inference time of 0.101 seconds per image,
outperforming the benchmark MobileNetV2 model
by approximately 9%. The proposed low-cost UGV
design, integrating an 8-channel relay module
and waterproof ultrasonic sensors for reliable
obstacle avoidance and autonomous navigation,
further enhances practical deployment feasibility.
Despite promising results, limitations, such as
occasional misclassification of visually similar
diseases, were identified. Future improvements will
include enhancing dataset diversity, refining CNN
architectures, and conducting more extensive field
evaluations to enhance reliability and generalizability.
Overall, the integration of deep learning and
Iol' technologies demonstrated here significantly
contributes toward practical precision agriculture
solutions, promoting sustainable disease management
practices and enhancing economic outcomes in
agriculture.
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