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Abstract
Farmers sometimes grow crops with low yields,
wasting land, labor, and time—especially in
developing countries where demand for food is
increasing. A Crop Recommendation System
(CRS) can help by using precision farming
techniques that analyze soil and environmental
data to suggest the most suitable crops. This
study proposes a CRS using a Modified Salp
Swarm Algorithm (MSSA) for feature selection
and an Adaptive Weighted Bi-directional Long
Short-Term Memory (AWBiLSTM) ensemble for
prediction. MSSA enhances the original algorithm
by improving local search and convergence speed,
addressing SSA’s limitations. Climate data is
pre-processed and relevant features are selected
using MSSA. AWBiLSTM then predicts suitable
crops with improved accuracy. Experimental
results show that the MSSA-AWBiLSTM approach
outperforms existing methods in precision, recall,
and execution time. The proposed method obtains
an accuracy of 98.72%, precision of 98.81%, recall
of 98.54%, specificity of 98.10%, PR-Score of
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98.18%, ROC-Score of 98.49%, F1-Score of 98.48%,
and Matthews Correlation Coefficient (MCC) of
97.63%.

Keywords: soil and climate conditions, feature Selection,
crop recommendation, modified salp swarm algorithm,
adaptive weighting based BiLSTM.

1 Introduction
Precision Agriculture (PA) utilizes advanced sensors
and analytical tools to improve crop yield and support
decision-making [1]. Globally adopted, PA helps
reduce labor, optimize resource use, and improve the
management of fertilizers and irrigation. Successful
crop selection depends on several factors including
irrigation, rainfall, soil conditions, sunlight, and pest
control [2, 20]. One major challenge is choosing
crops compatible with the soil conditions [3]. Climate
and soil factors must be thoroughly analyzed before
implementing any PA strategy, as they directly impact
crop growth [4, 5].
Accurate crop recommendations are essential to avoid
losses many farmers cannot afford [6]. However,
traditional machine learning (ML) models often
produce inaccurate results due to noisy and incomplete
datasets [7, 8]. Deep learning (DL) models have
emerged as a more effective alternative, capable of
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training on large datasets and solving complex decision
problems with greater accuracy [9]. The Internet
of Things (IoT) further strengthens PA by enabling
real-time data collection and analysis. Climate
information is critical for planning, and timely crop
selection is key tomaximizing yield [10]. Classification
models using variables like temperature, humidity,
soil type, pH, and crop period can support accurate
decision-making [12].
Farmers still often rely on intuition due to limited
access to real-time, reliable data, which leads to
poor crop choices and reduced productivity [11].
Despite existing research, crop recommendation
systems (CRS) still face issues with data quality, long
processing times, and low accuracy. To overcome
these limitations, DL models have been applied to
improve both efficiency and precision [11]. Among
optimization methods, the Salp Swarm Algorithm
(SSA), inspired by marine salps, has shown success in
various domains like feature selection and forecasting
[13–15, 17]. SSA benefits from minimal parameter
tuning and strong neighborhood search but can face
slow convergence and local optima stagnation [16].
To improve SSA’s performance, we introduce a
Modified SSA (MSSA) that incorporates local best
solution strategies, enhancing population diversity
and convergence. This is paired with an Adaptive
Weighted Bi directional Long Short-Term Memory
(AWBiLSTM) model for precise crop prediction.
Given the increasing complexity of DL models and
the risk of overfitting, effective feature selection
becomes essential. Our MSSA-AWBiLSTM approach
uses real-time soil and climate data to provide fast,
accurate crop recommendations, enabling informed
decision-making and improved yield outcomes.

2 Literature Review
Soni et al. [25] used ensemble ML but lacked deep
temporal modeling and adaptive optimization for
crop recommendation based on soil parameters using
XGBoost and decision tree. In [24] the potential
of LSTM networks is emphasized, but the lack of
integration with optimization techniques is noted
for the prediction and recommendation of crop
yields. By combining an adaptive weighting-based
ensemble of BiLSTM networks with a MSSA, this
research presents a novel hybrid framework for crop
recommendation. The suggested method makes use
of MSSA for dynamic hyperparameter optimization
and model selection, which improves convergence
efficiency and prevents local optima in contrast to

current methods that rely on static machine learning
models or isolated deep networks. Furthermore,
adaptive weighting is used by the ensemble method to
highlight the predictions of more dependable BiLSTM
learners, enhancing the system’s overall generalization
and robustness. The model performs noticeably
better than state-of-the-art methods thanks to this
synergistic integration, which allows it to capture
intricate temporal correlations in agricultural data
while adjusting to changing environmental and soil
conditions.
For agriculture to be sustainable and to maximize
output, accurate crop recommendations are essential.
Single deep learning methods frequently lack
robustness, while traditional machine learning models
have trouble with nonlinear, temporal agricultural
data. This paper suggests a novel hybrid technique
that combines an adaptive weighting-based ensemble
of bidirectional LSTM networks with a MSSA
for improved hyperparameter tuning in order to
overcome these constraints. This integration increases
prediction accuracy, speeds up convergence, and
captures bidirectional temporal trends. For farmers
and agricultural planners, the suggested system
provides a scalable and intelligent decision-support
tool that enables more adaptive and knowledgeable
crop selection depending on soil and environmental
factors.
The primary contributions of the MSSA-AWBiLSTM
CRS are outlined:
• Initially, pre-processing is conducted to improve

the quality of the real-time soil and climatic
parameters.

• MSSA is then utilized for feature selection. The
objective is to swiftly identify themost informative
and relevant features, ensuring reliable prediction
results.

• Crop recommendations are generated using the
BiLSTM Network Ensemble via the Adaptive
Weighting approach, facilitating farmers in
obtaining instantaneous and accurate crop
recommendations by inputting their preferred
climate and crop attributes.

• To validate the proposed method, extensive
comparisons are conducted with other
conventional frameworks, focusing on precision,
recall, and execution time.

The remaining sections are organized as follows:
Section 2 describes the mechanism for the proposed
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CRS. Section 3 presents the results and discussions.
Finally, Section 4 summarizes the work and suggests
directions for further research.

3 Methodology
MSSA with AWBiLSTM is designed for optimal crop
prediction and recommendation utilizing optimal
feature set chosen according to their fitness values.
The primary aim is to guide farmers in suitable
crop cultivation based on real-time soil and climate
information gathered using IoT based sensors for
increased crop productivity and maximizing yield.

3.1 Data collection and Preprocessing
The crop recommendation dataset, available at Kaggle
(https://www.kaggle.com/siddharthss/crop-recommendation
-dataset/), contains vital agricultural parameters such
as rainfall, crop yield, nitrogen (N), phosphorus (P),
potassium (K) levels, temperature, humidity, pH,
and precipitation. To ensure high-quality inputs,
data preprocessing is performed—addressing missing
values (denoted by ‘.’), removing duplicates, and
standardizing the structure. Missing entries are
replaced with distinct large negative values to help
models identify them as outliers. As the dataset lacks
class labels, supervised learning labels are generated
based on crop yield and cultivated area: crops with an
area > 0 are labeled as class 1, otherwise class 0.
Sensors are used to monitor soil moisture, pH,
temperature, humidity, and rainfall, which are
essential for accurate crop recommendations.
Additionally, mobile cameras detect crop infections
to suggest suitable fertilizers, with all data securely
stored in the cloud. The dataset is split into training
and testing sets, and deep learning (DL) algorithms
are used to train the crop recommendation model
effectively.

3.2 MSSA algorithm for feature selection
In this proposed modification of the SSA (MSSA) [31],
the concept of the local best solution is introduced. The
mathematical model of the MSSA is kept unchanged
compared to SSA for its leader salp position update,
while the followers salp positions are updated using
the following equation:

xij = bij + ε(xqj − x
i
j), j = 1, ..., D (1)

where bij is the ith local best position in the jth

dimension, xij is the ith position in the jth dimension,

xqj is a randomly selected position in a jth dimension
from a set of N solution. dimension. While the
best fitness values Bi are assigned the corresponding
outcomes Fi’s, the best local solutions bi’s are first
made equal to the first created population. As the
least (or greatest) fitness function value Fi and its
accompanying solution xi, the global optimum G and
its corresponding solution g are chosen.

Inside the main loop, Eq. (1) is used to update the
leader’s salp position in [31], and Eq. (1) is used to
calculate the new follower salp’s locations. The newly
created positions’ feasibility is confirmed, and the
associated fitness function is assessed and stored. By
comparing the recently acquired best local optimums
to the previously stored global optimum, the MSSA’s
final step finds a new global optimum. Once a
predetermined maximum number of generations has
been achieved, the iteration ends. In contrast to SSA,
MSSA incorporates information on the local best in
each individual of the population into its exploration
techniques. This could be useful if the food supply
becomes trapped in a local minimum and enable the
finding of other food sources using themodifiedMSSA
method. However, each neighborhood of the local
best is additionally exploited using a step size that is
established by comparing the associated local position
xi with a random individual xq. This enables the
neighborhood search area surrounding the local best
to be expanded or reduced.

Each solution is represented by a binary value ("1"
denoting a feature that was selected and "0" denoting
features that were not), and a random population of
salps is produced. The food fitness of each solution
(climate feature) is then calculated by MSSA. Next,
the food source is selected from the solution with the
lowest fitness value. As a result, it uses the K-Nearest
Neighbor (KNN) based fitness goal function to choose
the best answer. In the subsequent phase, MSSA
uses Eq. (1) in [31] to modify the salp positions.
Using climate data, the fitness value is updated at each
cycle to update the optimal solution and enhance the
relevant feature. The optimal solution is provided as a
vector of binary values once the maximum number of
iterations has been reached. On the dataset’s testing
segment, KNN makes use of the chosen features. It
is used in conjunction with the KNN classifier to
assess it on feature selection problems. Therefore,
MSSA is used to identify feature combinations that
use the fewest features possible while maximizing
classification precision. Using training data, the
fitness function is changed to improve crop prediction

5

https://www.kaggle.com/siddharthss/crop-recommendation-dataset/
https://www.kaggle.com/siddharthss/crop-recommendation-dataset/


IECE Transactions on Swarm and Evolutionary Learning

performance on the validation dataset.
Therefore, using climatic data as a reference, the salp
with the highest fitness score is modified to improve
the chosen features. Salps with the highest total fitness
score related to food discovery process are superior,
and optimal values for each salp (matching to climate
features) are established. The MSSA method uses a
small set of attributes to find feature combinations that
maximize classification accuracy. In the feature space,
every feature has a distinct dimension that ranges from
0 to 1.

3.3 Long Short TermMemory Network
A specific kind of Recurrent Neural Network called
LSTM was created to solve the vanishing gradient
problem and learn long-term dependencies. Every
LSTM cell has a hidden state (ht) for short-term output
and a cell state (Ct) for long-termmemory. Three gates
are used, namely:
The forget gate determines which data from the prior
cell state should be discarded.

ft = σ(Wf · [ht−1, xt] + bf ) (2)

The input gate determines which additional data
should be added to the cell state.

it = σ(Wi ·[ht−1, xt]+bi)C̃t = tanh(WC ·[ht−1, xt]+bC)
(3)

The input gate decides what portion of the cell state is
output.

ot = σ(Wo · [ht−1, xt] + bo) (4)

Cell state Update equation:

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

Hidden State (Output):

ht = ot ∗ tanh(Ct) (6)

Each gate controls the cell state using a tanh function
and permits or prohibits information flow using a
sigmoid function. Retained old memory and newly
acquired information are combined to update the cell
state.

3.4 Crop recommendation using BiLSTM Network
Ensemble via Adaptive Weighting method

This research employs a BiLSTM Network Ensemble
via Adaptive Weighting to predict optimal crop
conditions by learning from historical data. The
system enables farmers to quickly receive accurate
crop recommendations based on climate and crop
preferences. LSTM networks are well-suited for
handling sequential data due to their ability to capture
long-term dependencies through memory cells and
gated structures. These networks efficiently extract
high-level temporal features using recurrent hidden
layers, making them effective in representing evolving
input sequences [21]. LSTMs operate over time-series
data by using a sequence length parameter, which
reflects changes in input vectors across time steps. Each
memory block includes a memory cell, input gate,
forget gate, and output gate. The memory cell retains
temporal knowledge, while the gates manage the flow
of information. At each time step t, the LSTM updates
the memory cell ct and generates a hidden state ht.
These operations are governed by a set of equations
that define the internal dynamics of modern LSTM
models with forget gates [22].

it = σ(Wxixt +Whixt−1 + bi) (7)

ft = σ(Wxfxt +Whfxt−1 + bf ) (8)

ot = σ(Wxoxt +Whoxt−1 + bo) (9)

ct = ft ⊕ ct−1 + it ⊕ φ(Wxcxt +Whcht−1 + bc) (10)

ht = ot ⊕ φ(ct) (11)

whereWmn represents the weight of the link between
gate m and n, and bn acts as a bias parameter to be
learned, wherem ∈ x, h andn ∈ i, f, o, c. Furthermore,
⊕ represents the Hadamard product, σ designates the
normal logistic sigmoid function, and φ represents
the hyperbolic tangent function. σ(x) = 1/(1 + e−x);
φ(x) = (ex − e−x)/(ex + e−x). The input, forget, and
output gates are indicated as it, ft, and ot, respectively;
ct represents the internal state of the memory cell c at
time t. It’s hidden layer at time t is represented by the
vector ht, whereas ht−1 represents the values output by
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each memory cell in the hidden layer at the previous
time step.
This paper proposes an innovative BiLSTM ensemble
recommendation approach to improve prediction
accuracy. The method combines outputs from
multiple BiLSTM models by dynamically adjusting
their weights based on previous prediction errors
and a forgetting factor. These adaptive weights
enhance the ability of the system to generate accurate
recommendations. Each LSTM network in the
ensemble serves as a base predictor [23]. To
promote diversity and capture complex data patterns,
individual networks are trainedwith varying sequence
lengths andmemory cell configurations. This variation
allows the ensemble to better model non-linear
dependencies and complement each other’s strengths,
resulting in more precise and robust predictions.
Assuming a total of M LSTM models, their
combined prediction for the time series, denoted as
(y(1), y(2), ..., y(N)) with N observations, can be shown
as:

ŷk =

M∑
m=1

wmŷ
k
m, for k = 1, . . . , N (12)

The recommendation output (at the kth time stamp)
derived using mth LSTM model denoted by ŷkm, while
the related combining weight is wm. Each weight wm
corresponds to certain model’s output. We have 0 ≤
wm ≤ 1 and ∑M

m=1wm = 1.
BiLSTM is an advanced form of LSTM that processes
input sequences in both forward and backward
directions. This dual processing allows BiLSTMs to
capture contextual information from both past and
future elements, making them highly effective for
sequence modeling tasks. A BiLSTM consists of two
LSTM layers: one reads the input from start to end,
while the other reads from end to start. Their outputs
are combined at each time step, offering a richer
understanding of the sequence. BiLSTMs excel in
capturing long-range dependencies and are especially
useful in tasks like time series prediction, natural
language processing, and speech recognition, where
full context is essential for accurate predictions.

3.4.1 Adaptive weights for BiLSTM models
A distinctive weight determination method is used
to accommodate the changing dynamics of the
underlying time series data in a flexible manner.
When the regression errors of individual estimators

exhibit zeromean and are uncorrelated, their weighted
aggregation achieves minimal variance by assigning
weights inversely proportional to the variances of
the estimators [26]. This principle forms the
theoretical foundation of our weight determination
solution. A novel strategy for weight determination is
utilized, with the goal of dynamically capturing the
evolving dynamics of the underlying time series. The
computation of the combining weights is conducted
recursively:

wk=1
m = wkm + λ∆wkm, form = 1, . . . ,M (13)

where λ = 0.3, and ∆wkm is computed according to the
inverse prediction error of the respective BiLSTM base
model:

∆wkm =

1
εkm
1

ε1m+ 1

ε2m+ 1

ε3m+....+ 1

εkm

(14)

The εkm is related to past prediction error measured up
to the kth time step:

εkm =

k∑
t=k−V+1

γk−tetm (15)

where 0 < γ ≤ 1, 1 ≤ V ≤ k, and etm denotes the
prediction error at each time step t of themth LSTM
model, εkm is computed by constructing a sliding time
window comprising the last V prediction errors. The
introduction of the forgetting factor γ serves to reduce
the influence of older prediction errors. Through
updating weights over time, we can determine these
weights by examining inherent patterns in consecutive
data forecasting attempts. This approach is suitable as
it circumvents the need for complex optimization to
ascertain adaptive weights.
Using the preceding Eq., the weights evolve over
the time series encompassing T time steps (where
K = 1, . . . , T), culminating in the ultimate weights
wTm (where m = 1, . . . ,M). Eventually, the weight
designated to each model is calculated as:

wm =
wTm∑M
n=1w

T
n

form = 1, ...,M (16)
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The weights computed satisfy the constraints such
that 0 ≤ wm ≤ 1 and ∑M

m=1wm = 1 [27].

The equations presented indicate that adaptive weight
based amplification is effectively carried out within the
LSTM. Therefore, it proves instrumental in generating
precise crop recommendation outcomes [27]. Figure 1
shows the general architecture of AWBiLSTM model.

Figure 1. General architecture of AWBiLSTM model.

4 Experimental Results and Discussion
The performance evaluation of the MSSA-AWBiLSTM
method is carried out using Python 3.6.5 on a PC
equippedwith an i5-8600k processor, GeForce 1050Ti 4
GB GPU, 16 GB RAM, 250 GB SSD, and 1 TBHDD. The
proposedMSSA-AWBiLSTM is comparedwith existing
AWBiLSTM model to assess its effectiveness. Notably,
the proposed MSSA-AWBiLSTM model surpasses
existing classification algorithms [18, 19, 28–30] for
crop recommendation across various performance
metrics including recall, precision, accuracy, specificity,
Precision Recall Curve (PR-Score), receiver operating
characteristic (ROC-Score), F1-Score, Matthews
correlation coefficient (MCC), R2-Score and
execution time. These algorithms have previously
demonstrated their performance in related literature.
The comparison of performance evaluation metrics is
presented in Table 1.
Table 1 shows the crop recommendation results
obtained from the MSSA-AWBiLSTM. Results
demonstrate superior performance with an accuracy
of 98.72%, precision of 98.81%, recall of 98.54%,
specificity of 98.10%, PR-score of 98.18%, ROC-score
of 98.49%, F1-score of 98.48%, and MCC of 97.63%.
Table 2 presents a comparative analysis of
crop recommendation results achieved by the
MSSA-AWBiLSTM model alongside existing models,

Table 1. Performance evaluation of MSSA-AWBiLSTM
across standard classification metrics.

Performance Metrics Values
Accuracy 98.72
Precision 98.81
Recall 98.54
Specificity 98.10
PR-Score 98.18
ROC-Score 98.49
F1-Score 98.48
MCC 97.63

Table 2. Comparative analysis of MSSA-AWBiLSTM and
benchmark models on classification performance.

Methods Accuracy Precision Recall F1-
Score

XAI-CROP 95.12 95.62 95.78 95.86
IDCSO-
WLSTM 92.68 90.88 91.98 91.79
MSSA-
AWBiLSTM 98.72 98.81 98.54 98.48

RFOERNN 98.45 98.51 98.45 98.46
MMML 97.91 97.97 97.91 97.92
NC-SAE 94.64 94.06 94.78 95.49
SVM-Kernel 91.73 91.13 92.42 93.80
SVM 89.49 88.17 88.70 88.46
SSAE-CNN 90.85 93.86 90.60 92.94
PCA-CNN 88.62 89.27 87.75 89.08
DT 85.07 84.73 85.91 85.39

including [12, 19, 28–30]. The crop recommendation
outcomes of the MSSA-AWBiLSTM model are
compared with those of existing models in terms of
R2 score, as presented in Table 3. These values affirm
the superior crop recommendation capabilities of the
MSSA-AWBiLSTM model compared to other models.
When the proposed method operates at a faster
pace, it signifies an improvement in the system’s
efficiency. Both the proposed MSSA-AWBiLSTM
algorithm and the current methods are utilized
to compare their execution times as a measure of
comparison. Remarkably, the MSSA-AWBiLSTM
algorithm demonstrates shorter execution times when
applied to the crop recommendation dataset. Table 4
provides a comparison between the existing and
proposed systems based on Execution Time (in
seconds).
Figure 2 depicts the R2 convergence curve derived
from the MSSA-AWBiLSTMmodel. This curve gives
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Table 3. Comparison of R2 score analysis.

Methods R2-Score
XAI-CROP 94.15
IDCSO-WLSTM 92.54
MSSA-AWBiLSTM 99.14
RFOERNN 99.88
MMML 98.54
SVR 91.99
KNN 87.05
MLR 89.10
ANN 91.97

Table 4. Comparison of Execution time of
MSSA-AWBiLSTM approach with existing methodologies.

Methods Execution time (sec)
XAI-CROP 240.0554
IDCSO-WLSTM 241.0484
MSSA-AWBiLSTM 228.0112
RFOERNN 240.0529
MMML 242.0492
SVR 242.0532
KNN 241.0639
MLR 242.0677
ANN 242.0704

crucial information about the model’s performance
and capacity to simulate the dataset’s intrinsic patterns
and connections. The R2 convergence curve, which
serves as an indicator of convergence during training,
shows the R2 score on the y-axis against the number
of iterations on the x-axis. The R2 score indicates how
much of the target variable’s variance is explained
by the proposed model. A higher R2 value shows
that the model is more aligned with the data and
has enhanced prediction accuracy. Analysis of the
R2 convergence curves allows researchers to gauge
training dynamics, performance stability, convergence
rate, and the potential for overfitting or underfitting.

4.1 Multivariable Analysis
Soil pH, nitrogen (N), phosphorus (P), potassium
(K), organic carbon, temperature, rainfall, humidity,
sunshine hours, soil type index, and area ID were
among the important variables that were included in
the multivariable analysis for crop recommendation.
Principal component analysis (PCA) was performed
to reduce dimensionality and maintain 95% of the
variance using the top six principal components,
while multiple linear regression (MLR) was utilized
to evaluate the effect of these factors on crop

Figure 2. R2 convergence curve for MSSA-AWBiLSTM
model.

yield. Additionally, the analysis used the variance
inflation factor (VIF) to check for multicollinearity
and the analysis of variance (ANOVA) to assess the
significance of the grouped variables. The AWBiLSTM
ensemble model was used to improve prediction
after the MSSA selected features based on the PCA
results. The main conclusion of the analysis were
that temperature, rainfall, and soil pH all significantly
affected crop yield (p < 0.01). Furthermore, when
multivariable features were used instead of raw input
data, AWBiLSTM performance increased.

5 Conclusion and Future Work
Agriculture is the primary livelihood for farmers,
making crop selection based on soil conditions crucial
for maximizing yield. Data-driven recommendations
using ML and IoT can significantly improve farmers’
decision-making, reducing costs and enhancing
precision in precision agriculture. This study
presents a novel MSSA-AWBiLSTM method for crop
recommendation and yield prediction, addressing the
challenge of selecting the most suitable crop during
the growing season. The model is fine-tuned using
region-specific data and validated for different soil
types.
The MSSA algorithm selects key features from the
dataset, while AWBiLSTM predicts and recommends
crops using an LSTM network ensemble with
adaptive weighting. Experimental results show
that MSSA-AWBiLSTM outperforms other methods,
achieving a 98.72% improvement in crop prediction
accuracy and a higher R2 value by optimally selecting
climate parameters.
While the MSSA-AWBiLSTM method improves crop
prediction, it may not perform well with weed
species detection. Future work will focus on
expanding the dataset withmore variables, integrating
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yield prediction, and incorporating market factors,
such as post-harvest storage and profitability, to
further enhance and validate the proposed model’s
applicability.
The MSSA-AWBiLSTM approach has drawbacks
despite its great accuracy. It might have trouble
with tasks that need for multiple kinds of data,
including inputs based on images, like weed species
detection. Additionally, the model’s scalability may
be constrained by the availability and quality of
region-specific data. Furthermore, outside variables
like insect outbreaks and market dynamics are not
taken into account. Future studies will concentrate
on adding more economic and environmental factors,
broadening the dataset to encompass a variety of
crop and soil types, and improving the model
to facilitate post-harvest decision-making, storage
planning, and profitability forecasting for more useful
implementation.
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