
IECE Transactions on Swarm and Evolutionary Learning
http://dx.doi.org/10.62762/TSEL.2025.182681

RESEARCH ARTICLE

Enhanced Differential Evolution: Multi-Strategy
Approach with Neighborhood-Based Selection

Elivier Reyes-Davila1, Eduardo H. Haro 1, Angel Casas-Ordaz 1,*, Diego Oliva 1, Saúl
Zapotecas-Martínez 2 and Mohammed El-Abd 3

1Depto. de Ingeniería Electro-Fotónica, Universidad de Guadalajara, CUCEI, 44430 Guadalajara, Jalisco, Mexico
2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Sta. María Tonantzintla, Puebla 72840, Mexico
3College of Engineering and Applied Sciences, American University of Kuwait, Salmiya 22001, Kuwait

Abstract
The Differential Evolution (DE) has stood as
a cornerstone of Evolutionary Computation
(EC), inspiring numerous approaches. Despite
its foundational role, the selection stage of DE
has received little attention, with only 2% of
documented modifications in the literature on
this aspect. Recent research has underscored the
potential for significant algorithmic improvement
through thoughtful modifications to this critical
stage, particularly in accelerating the exploitation
phase. This study introduces a novel EC strategy
rooted in DE principles. To enhance algorithmic
exploration, a systematic decision-making process
regarding function evaluations is employed
to select between two of the most prevalent
mutations in the field. Similarly, a new selection
operator is introduced to augment the exploitation
phase by comparing each individual with its
respective 25% neighborhood population. The
proposed algorithm, Differential Evolution with
Selection by Neighborhood (DESN), undergoes

Submitted: 07 February 2025
Accepted: 01 May 2025
Published: 31 May 2025

Vol. 1, No. 1, 2025.
10.62762/TSEL.2025.182681

*Corresponding author:
�Angel Casas-Ordaz
angel.casas@academicos.udg.mx

comprehensive evaluation against eight classical
and recent approaches, leveraging the CEC-2017 set
of benchmark functions.

Keywords: differential evolution, mutation operator,
selection mechanisms.

1 Introduction
Differential Evolution (DE) stands as one of the
most esteemed algorithms within Evolutionary
Computation (EC), initially introduced by Storn
et al. [1]. Since its inception in 1995, DE has
found wide-ranging applications in scientific and
engineering domains [2], inspiring numerous EC
approaches that have become pivotal benchmarks in
the literature [3]. In the specialized literature, most
approaches have been derived from schemes involving
tailored modifications to DE’s key stages, such as
initialization, mutation, crossover, and selection
mechanisms. Notably, mutation and crossover
operators, along with the tuning of their parameters,
have been the focal points of extensive research efforts.

In the last few years, a significant number of variations
of the DE algorithm have been developed that have
proven to be both novel and noteworthy [4]. These

Citation
Reyes-Davila, E., Haro, E. H., Casas-Ordaz, A., Oliva, D.,
Zapotecas-Martínez, S., & El-Abd, M. (2025). Enhanced Differential
Evolution: Multi-Strategy Approach with Neighborhood-Based
Selection. IECE Transactions on Swarm and Evolutionary Learning,
1(1), 12–24.
© 2025 IECE (Institute of Emerging and Computer Engineers)

12

http://dx.doi.org/10.62762/TSEL.2025.182681
http://crossmark.crossref.org/dialog/?doi=10.62762/TSEL.2025.182681&domain=pdf
https://orcid.org/0000-0001-7179-5283
https://orcid.org/0009-0005-7711-7551
https://orcid.org/0000-0001-8781-7993
https://orcid.org/0000-0003-1281-9040
https://orcid.org/0000-0003-0938-8542
http://dx.doi.org/10.62762/TSEL.2025.182681
mailto:angel.casas@academicos.udg.mx


IECE Transactions on Swarm and Evolutionary Learning

variations have demonstrated the algorithm’s capacity
for enhancement in varied ways, underscoring its
adaptability and flexibility. This flexibility has enabled
the DE to align with a substantial body of related
research, making it challenging to comprehensively
survey all relevant works in a single compendium,
as evidenced by Pant et al. [5]. A notable
example is the Chaotic Opposition-based-learning
Differential Evolution (CODE) algorithm, which
proposes the implementation of chaotic maps and
an opposition-based learning strategy to develop a
novel variant of DE featuring a modified initialization
scheme [6]. Additionally, a proposal known
as Dynamic Combination Differential Evolution
(DCDE) [7] has emerged, which involves a variant
of the mutation operator based on the dynamic
combination and a two-level parameter regulation
strategy. Additionally, the Adaptive Differential
Evolution With Optional External Archive (JADE)
algorithm [8] is noteworthy for implementing a novel
mutation strategy with an optional external file and
adaptively updating the control parameters.

Various proposals regarding mutation operators
have surfaced in the literature, such as the triangular
mutation [9] and the hemostasis-based mutation [10].
On the other hand, crossover operators have been
presented, such as the parent-centered crossover [11]
and the multiple exponential crossover [12]. However,
the literature on selection stage modifications
remains relatively sparse, with fewer related works
emerging over the past decade. One prominent
investigation in this domain is the new selection
operator algorithm (NSO) proposed by Zeng et
al. [13]. However, in general terms, investigations on
selectionmechanisms for DE represent a small fraction,
approximately 2%, of the modifications reported in the
specialized literature [5]. Conversely, advancements
in evolutionary computation and machine learning
have demonstrated substantial progress [14–16].
The development of these algorithms has created a
range of possibilities for modifications, which can be
implemented in specialized areas [17, 18].

To provide novel insights into the DE selection
stage, this paper introduces Differential Evolution
with Selection by Neighborhood (DESN), a new
evolutionary algorithm with an improved selection
mechanism. DESN employs a decision variable based
on current function access to choose between two
classical mutation strategies:DE/rand/2 andDE/best/1.
Additionally, it features a selection stage where
the current trial vector is compared against its

individual and its neighborhood, which constitutes
approximately 25% of the population. These
modifications markedly enhance the algorithm’s
performance, improving exploration and exploitation
phases compared to the original DE.

DESN’s efficacy is evaluated on the benchmark
functions of the 2017 Congress on Evolutionary
Computation (CEC) against eight other established
evolutionary and meta-heuristic algorithms.
Computational experiments demonstrate DESN’s
superior performance in exploration and exploitation,
with the Friedman test confirming its superiority.
Furthermore, a Big O analysis affirms DESN’s
competitive computational cost, establishing it as a
promising algorithm for future applications.

The paper is structured as follows: Section 2 provides a
general background to understand the presented work,
Section 3 details the proposedDESN, Section 4 presents
computational and statistical results, and Section 5
discusses the conclusions.

2 General Background
2.1 Differential evolution algorithm
The DE algorithm, similar to numerous optimization
algorithms, was conceived to address real-world
problems[19]. Its fundamental algorithmic structure
encompasses four phases: initialization, mutation,
crossover, and selection. Notably, it operates as a
population-based stochastic search method, with its
efficacy being contingent upon the mutation strategy,
crossover strategy, and control parameters such as
population size (Np), crossover rate (Cr), and scale
factor (F). To illustrate the algorithm’s framework,
each phase is delineated as follows.

2.1.1 Initialization
The algorithm begins with initialization, a crucial step
where the search space limits for the optimization
problem are defined. Each individual solution within
the population is represented as a d-dimentional vector
during the g-th generation, denoted as:

xgi =
{
xgi,1, x

g
i,2 . . . , x

g
i,d

}
, i = 1, . . . , Np (1)

where Np signifies the population size, g denotes the
generation index, and d represents the dimensionality
of the problem.

The individual vectors are generated according to the
equation:

x0i,d = xmin,d + rand(0, 1) ∗ (xmax,d − xmin,d) (2)

13



IECE Transactions on Swarm and Evolutionary Learning

where rand(0, 1) symbolizes a uniformly distributed
random variable ranging from 0 to 1. xmin and xmax
denote the lower andupper bounds for each dimension
of the search space, defined as:

xmin = (xmin,1, . . . , xmin,d) (3)

xmax = (xmax,1, . . . , xmax,d) (4)

2.1.2 Mutation
Following initialization, the DE algorithm employs
a random perturbation process on each candidate
solution. This process reshuffles the elements of
the population to create a modified version of each
individual, resulting in the creation of mutant vectors
vgi . The widely adopted mutation strategy in DE,
known as DE/rand/1, is defined by the equation:

vg+1
i = xgr3 + F (xgr1 − x

g
r2) (5)

where xr1, xr2, xr3 are randomly selected population
vectors considering that r1 6= r2 6= r3 6= i (index of
the target vector), and F is the scale factor that is a
fixed value in the range of [0, 2].

2.1.3 Crossover
To complement mutation, the crossover strategy
enhances population diversity. Governed by the
crossover probability (Cr), a constant value within
the range [0, 1], this strategy necessitates user-defined
determination. Generating a new vector, termed the
trial vector ugi , involves a crossover between the target
vector xgi,d and the mutant vector vgi,d as follows:

ug+1
i = ugd

{
vgi,d if d = drand or rand(0, 1) ≤ Cr
xgi,d otherwise

(6)

where drand denotes a randomly chosen index from
{1, 2, . . . , d}, ensuring ugi encompasses at least one
parameter of the mutant vector vgi .

2.1.4 Selection
The selection process in DE determines the survival of
target or trial solutions in the subsequent generation
based on their fitness values. The vector with the fittest
values progresses to the next generation’s population.
This operation is described as:

xg+1
i =

{
ugi,j if f(ug+1

i ) ≤ f(xgi ),
xgi,j otherwise,

(7)

Once the new population is established, the mutation,
crossover, and selection processes are iterated until the

optimum solution is found or a specified termination
criterion is met.

3 Proposed Approach
The proposed DESN introduces a series of three
targeted modifications to enhance the efficiency
and efficacy of the standard DE algorithm. Firstly,
an adjustment is made to the mutation stage,
where traditional DE algorithms typically employ a
predefined mutation strategy. In the proposed DESN,
this stage undergoes refinement to accommodate a
more nuanced approach, which aims to foster greater
diversity and exploration within the population.
Secondly, the selection stage, which governs the
retention and propagation of candidate solutions,
undergoes scrutiny and optimization in the proposed
DESN. The selection process is fine-tuned through
strategic adjustments and enhancements to identify
better and prioritize promising candidate solutions,
thereby enhancing the algorithm’s ability to converge
toward optimal or near-optimal solutions. Thirdly,
DESN incorporates a novel control parameter
adaptation scheme, leveraging the iterative process’s
dynamics to dynamically adjust key parameters
such as scaling factor (F) and crossover rate (Cr).
By monitoring the iterative process for signs of
stagnation or diminishing returns, DESN adapts
these parameters dynamically, thereby promoting
sustained exploration and exploitation throughout
the optimization process. Collectively, these above
modifications synergistically contribute to the overall
effectiveness and versatility of DESN, enabling it to
tackle a wider range of optimization problems with
improved efficiency and robustness compared to
traditional DE algorithms.

The DE/rand/1 mutation, a cornerstone of the
canonical differential evolution algorithm, is
renowned for its adept exploration capabilities
while exhibiting limitations in effectively exploiting
promising regions. Conversely, though proficient
in exploitation, the DE/best/1 mutation is prone to
stagnation, particularly in multimodal problems.
Recognizing the inherent trade-offs within these
mutation operators, it becomes evident that no single
strategy satisfactorily addresses the diverse challenges
encountered across optimization landscapes.

In response to this realization, a strategic unification
of mutation strategies is proposed. By leveraging
the strengths of both DE/rand/2 and DE/best/1
strategies, as shown in Equation (8) and Equation (9)
respectively. The aim is to synthesize a hybrid

14



IECE Transactions on Swarm and Evolutionary Learning

approach that capitalizes on the complementary
advantages of each strategy. This unification approach
seeks to balance the exploration- exploitation trade-off
inherent in optimization processes, thereby enhancing
the algorithm’s ability to navigate complex and
dynamic search spaces.

vg+1
i = xgr5 + F (xgr1 − x

g
r2) + F (xgr3 − x

g
r4) (8)

vg+1
i = xgbest + F (xgr1 − x

g
r2) (9)

By integrating diverse mutation strategies, the
proposed approach endeavors to harness the best
capabilities of each strategy while mitigating their
limitations. Through this synthesis, the algorithmaims
to achieve a more robust and adaptive optimization
framework capable of addressing a broader spectrum
of optimization challenges with heightened efficacy
and efficiency.

The classical DE/rand/1 mutation, renowned for
its prowess in exploration, encounters challenges
in fully exploiting promising regions within the
search space. On the contrary, the DE/best/1
mutation excels in exploitation but often grapples
with stagnation, particularly in complex multimodal
problems. Acknowledging the inherent constraints of
individual mutation operators, a compelling impetus
arises to harness the collective strengths of the
DE/rand/2 and DE/best/1 strategies.

Through a strategic integration of these mutation
schemes, as described in Equation (8) and
Equation (9), respectively, a balanced and synergistic
approach to the search process emerges. By leveraging
the exploratory capabilities of DE/rand/2 alongside
the exploitation-enhancing features of DE/best/1,
the consolidated strategy seeks to mitigate the
shortcomings of each method.

This unification aims to foster a more robust
and adaptive optimization framework capable of
navigating the intricacies of diverse optimization
landscapes with heightened efficacy and resilience.
By orchestrating a harmonious interplay between
exploration and exploitation, the proposed approach
strives to transcend the limitations inherent in
traditional mutation strategies, thereby advancing the
frontiers of evolutionary optimization methodologies.

Determining which strategy to employ relies on
the sigmoid function depicted in Equation (10).
Essentially, this function governs the likelihood of

utilizing the DE/rand2 mutation.

Pmut =
1

1 + e1.05−(FEmax/FE)2
(10)

From Equation (10) FE corresponds to the number of
function evaluations. Figure 1 visually represents this
function. Observation of the plot reveals that within
the initial 25 % of function evaluations, the probability
of selecting the exploration-oriented mutation stands
at approximately 0.95. Subsequently, in the middle
phase of the search process, this probability declines
to around 0.82. Towards the concluding stages, it
further diminishes to approximately 0.45, affording
the algorithm greater opportunities to exploit the
present region. As illustrated in Figure 1, this approach
fosters a balanced integration of the diverse mutation
options, meticulously calibrated in a strategic manner.
The interchangeable behavior between the different
mutations, with a variable probability percentage
guided by the sigmoid function, generates a superior
combination of exploration and exploitation, thereby
enhancing the algorithm’s performance.

Figure 1. Indicator of the percentage of probability for the
chosen mutation.

Conversely, many researchers concur that no single set
of control parameters ensures optimal performance
for the Differential Evolution (DE) algorithm across
diverse problem domains [21]. Consequently, the DE
algorithm must be able to adjust the influence of both
mutation and crossover operators while generating
trial solutions. One proposed solution involves the
incorporation of a stagnation counter (s): each time a
trial solution fails to improve upon the best solution,
this counter increments by one unit. If it surpasses the

15



IECE Transactions on Swarm and Evolutionary Learning

population size, the values of F and CR are randomly
reset within the range of [0,1].

Furthermore, in the selection stage, each trial vector
is evaluated against n neighboring solutions of the
target vector. Extensive experimentation revealed that
setting n to 25% of the population size yields optimal
results. For instance, in a population comprising 100
solutions where the target vector is the tenth element,
the trial vector is compared with solutions indexed
from 10 to 35. Subsequently, the worst-performing
solution among them is replaced by the trial vector.
This mechanism enhances the likelihood of integrating
the trial vector into the population, therebyminimizing
redundant function evaluations. This behavior is
reflected in Algorithm 1. As can be seen, the initial
behavior of the choice of mutation type is determined
by the Pmut value (within lines 6-11). Subsequently,
the crossover operator is carried out. Following
this, selection based on neighbors is implemented.
Subsequent to this, the behavior of taking into account
25% of the population is initiated, culminating in
the selection of the optimal solution (lines 16-28).
Finally, the stagnation value is determined to ascertain
whether the values of F and Cr will undergo random
modification.

4 Experimental Study and Analysis of Results
This section presents the outcomes derived from
comparative computational experiments. All
algorithms were executed under uniform conditions:
30 dimensions, 50,000 function evaluations, and
35 independent runs conducted in the MATLAB
environment on a Notebook (2.7 GHz processor, 8 GB
RAM) running Windows 10 OS. The proposed DESN
is assessed using the 30 benchmark functions from
CEC-2017, categorized into unimodal, multimodal,
hybrid, and compositional functions [20]. Moreover,
DESN is computationally contrasted against eight
distinct algorithms, including the original DE [1]
and Covariance Matrix Adaptation with Evolution
Strategies (CMAES) [22]. Additionally, three
contemporary meta-heuristic algorithms, namely
the Reptile Search Algorithm (RSA) [23], the
Runge Kutta Optimizer (RUN) [24], and the
Nutcracker Optimization Algorithm (NOA) [25], are
included. Finally, three classical algorithms from
the evolutionary literature, comprising Simulated
Annealing (SA) [26], the well-established Particle
Swarm Optimization algorithm (PSO) [27], and the
original Genetic Algorithm (GA) [28] are considered.
Detailed parameters of these algorithms are provided

Algorithm 1: DE with selection by neighborhood
Initialize parameters Cr, F ,Np, iteration and
stagnation counters g ← 0, s← 0. ;
Initialize population with Equation (1) ;
Determine the size of the neighborhood
n← (Np ∗ 0.25) ;

while stop condition not met do
for i = 1 : Np do

Determine Pmut . Equation (10) ;
if rand ≤ Pmut then

vg
i ← DE/rand/2 . Equation (8);

else
vg
i ← DE/best/1 . Equation (9);

end
ug
i ← crossover . Equation (6) ;

if i > 0.75 ∗Np then
n = n− 1;

end
for k = 0 : n− 1 do

if f(ugi ) ≤ f(x
g
i+k) then

xg+1
i ← ugi ;

if f(ugi ) ≤ f(xbest) then
xbest ← ugi ;
s = 0 ;

else
s = s+ 1

end
Break

else
xg+1
i ← xgi ;

end
end
if s > Np then

F = rand ;
Cr = rand ;

end
end
g ← g + 1;

end

in Table 1.

Tables 2, 3 and 4 exhibit the statistical outcomes
derived from 35 runs performed for each algorithm.
For comparison, key metrics were computed for each
method, including Average, standard deviation (STD),
and a ranking based on the Average of the 35 runs
(Rank Avg). The stop criteria for all algorithms is
the maximum number of function evaluations. The
tables are organized as follows: Table 2 displays the
results of the unimodal and multimodal functions,

16



IECE Transactions on Swarm and Evolutionary Learning

Table 1. Specific parameters of the algorithms.

Parameters Symbol Value Algorithm
Scaling factor F 0.8 DESN / DE
Crossover rate Cr 0.2 DESN / DE
Neighborhood rate Nv 0.25 DESN
Constant of change α 0.1 RSA
Step size β 0.005 RSA
Step rate αµ 8 CMAES
Attempts rate α 100 NOA
Change rate Pa 0.0001 NOA
Exploration rate Pr 0.0001 NOA
Increase rate β 0.98 SA
Crossing rate Rc 0.8 GA
Mutation rate Rm 0.2 GA

Table 3 showcases the results for hybrid functions, and
Table 4 presents the results for composition functions.
To enhance clarity, exceptional values are highlighted
in bold for easier identification.

The objective of conducting experimental tests on
this benchmark, which comprises different categories
of functions, is to validate the effectiveness and
robustness of the algorithms in various scenarios. In
the context of unimodal functions, these functions
can be characterized as those that possess a global
maximum (also known as a peak) or a global
minimum (trough) in the interval [a, b]. These
functions are designed to assess the exploitability
of the algorithms, given the presence of a single
optimum. Conversely, multimodal functions contain
more than one "mode" or optimum,which often creates
difficulties for any optimization algorithm since there
are many attractors that the algorithm can target.
Consequently, these functions necessitate a greater

emphasis on exploratory behavior to circumvent the
stagnation at the local optima. On the other hand,
there are composite functions. This type of function
consists of several unimodal andmultimodal functions,
increasing the search process’s difficulty. The idea of
testing algorithms on this type of function is to test the
algorithm’s performance in finding randomly located
global optima while avoiding falling into several deep
local optima scattered in the same random way as
the global optima. Finally, we have the hybrid or
shifted functions. These functions are designed to
move the global optimum to a different location than
it originally had in some of the previous unimodal
and multimodal functions. This tests whether the
algorithms have the well-documented design flaw
whereby some metaheuristic algorithms seem to
perform better only when the optimization problem
has the global optimum at position zero.

Table 2 highlights that the proposed DESN algorithm
achieves superior results compared to other algorithms.
Remarkably, DESN performed notably better for
problems F1 and F3- F10. SA showed similar values,
albeit solely in standard deviation. It is worth noticing
that F2 was excluded due to its unstable behaviors [20].
Building upon the outcomes in Table 2, Figure 2
provides a graphical representation of convergence
results for unimodal and multimodal functions. These
convergences are based on the best metric results of
the respective algorithms. Figure 2(a) illustrates a
sample of the unimodal function F1, where DESN
outperforms other algorithms, with CMAES and NOA
displaying competitive potential but getting stuck in
local optima. Conversely, Figure 2(b) demonstrates
a sample of the multimodal function (F10), where

(a) Function 1 (b) Function 10

Figure 2. Convergences of unimodal and multimodal functions.

17



IECE Transactions on Swarm and Evolutionary Learning

Table 2. Statistical results for benchmark functions in 30 dimensions (Part 1).
Function Algorithms

No Metric DESN DE CMAES RSA RUN NOA SA PSO GA

F1
Average 1.94E+05 3.36E+08 1.54E+09 4.10E+10 1.98E+10 1.01E+07 1.19E+11 3.31E+10 4.03E+10
STD 5.09E+04 8.29E+07 1.37E+10 1.42E+10 1.39E+09 5.03E+06 6.13E-05 8.59E+09 1.41E+10

Rank Avg 1 3 4 8 5 2 9 6 7

F2
Average 5.92E+21 5.89E+46 -3.54E+270 1.50E+54 2.17E+31 7.89E+28 2.35E+47 3.82E+39 9.35E+54
STD 2.35E+22 4.99E+47 Inf 1.50E+55 1.74E+32 4.99E+29 4.08E+31 2.96E+40 9.32E+56

Rank Avg 2 6 1 8 4 3 7 5 9

F3
Average 7.02E+04 7.86E+05 1.55E+08 1.99E+10 1.57E+05 1.02E+05 1.49E+05 2.56E+05 1.87E+10
STD 3.35E+04 7.30E+05 1.49E+10 1.99E+11 6.56E+04 6.98E+04 0.00E+00 4.64E+05 3.75E+12

Rank Avg 1 6 7 9 4 2 3 5 8

F4
Average 4.87E+02 1.04E+03 1.16E+03 9.50E+03 2.03E+03 5.43E+02 2.62E+04 3.53E+03 1.17E+04
STD 3.63E-02 2.42E+02 7.92E+03 1.80E+04 1.67E+02 1.90E+01 1.10E-11 1.35E+03 5.71E+03

Rank Avg 1 3 4 7 5 2 9 6 8

F5
Average 6.06E+02 8.01E+02 6.92E+02 9.67E+02 8.61E+02 7.33E+02 1.19E+03 9.02E+02 9.54E+02
STD 1.02E+01 3.16E+01 5.50E+01 1.25E+02 2.05E+01 3.44E+01 6.86E-13 3.13E+01 1.68E+01

Rank Avg 1 4 2 8 5 3 9 6 7

F6
Average 6.01E+02 6.15E+02 6.05E+02 6.88E+02 6.60E+02 6.05E+02 7.45E+02 6.70E+02 6.90E+02
STD 9.60E-02 2.13E+00 1.84E+01 1.04E+01 3.52E+00 1.06E+00 1.14E-13 7.30E+00 1.79E+01

Rank Avg 1 3 2 6 4 2 8 5 7

F7
Average 9.20E+02 1.04E+03 9.44E+02 1.44E+03 1.31E+03 9.78E+02 3.47E+03 2.26E+03 2.00E+03
STD 2.12E+01 3.61E+01 2.30E+02 3.04E+02 3.52E+01 2.79E+01 1.83E-12 3.55E+02 1.31E+02

Rank Avg 1 4 2 6 5 3 9 8 7

F8
Average 8.47E+02 1.09E+03 9.85E+02 1.16E+03 1.13E+03 1.01E+03 1.31E+03 1.19E+03 1.22E+03
STD 4.18E-03 3.23E+01 4.38E+01 6.79E+01 2.16E+01 2.75E+01 4.57E-13 3.21E+01 2.35E+01

Rank Avg 1 4 2 6 5 3 9 7 8

F9
Average 9.05E+02 1.49E+04 1.40E+03 1.50E+04 1.01E+04 1.11E+03 3.09E+04 1.44E+04 1.49E+04
STD 6.60E-01 4.37E+03 3.60E+03 8.58E+03 1.14E+03 8.61E+01 7.31E-12 2.17E+03 1.48E+03

Rank Avg 1 6 3 7 4 2 8 5 6

F10
Average 4.23E+03 9.10E+03 8.33E+03 8.50E+03 6.91E+03 9.24E+03 1.07E+04 8.08E+03 8.54E+03
STD 1.30E-01 5.87E+02 3.17E+02 6.85E+02 1.09E+02 5.47E+02 7.31E-12 4.77E+02 6.08E+02

Rank Avg 1 7 4 5 2 8 9 3 6

DESN again exhibits superior performance compared
to other approaches. Moreover, no algorithm emerges
victorious in multimodal functions or competes
effectively with DESN. The behavior of the DESN
algorithm indicates its capacity to identify global
optima within this particular function type. This
finding underscores the algorithm’s versatility in this
particular class of functions.

Table 3 demonstrates analogous patterns to the
preceding tables. Across all instances of the DESN
algorithm, favorable outcomes are observed, except
for the standard deviation of the SA, where results
deviate consistently. As indicated by the data in
Table 3, Figure 3 showcases convergence samples of
hybrid functions (F12 and F13). These convergences
correspond to the bestmetric results, shown in Figure 2.
Specifically, F12 and F13 are chosen for their notable
disparities. Both Figure 3(a) and Figure 3(b) reveal
consistent performance by the DESN, surpassing other
algorithms, with CMAES and NOA emerging as the
sole competitive alternatives.

Table 4 demonstrates that, overall, the DESN

algorithm performs the best across most cases,
except for function 26, where the NOA algorithm
shows superior performance. Further exploring
convergence, Figure 4 provides a visual analysis of
convergence for two samples from the composition
functions, corresponding to the results outlined in
Table 4. It is important to note that the convergence
analysis presented relies on the best metric results,
as indicated by Figure 2 and Figure 3. It is
widely acknowledged that composition functions
are inherently more challenging compared to other
benchmark functions [29]. Thus, the performances
depicted in Figure 4(a) and Figure 4(b) align with
those reported in Table 4. Both samples illustrate
DESN outperforming other algorithms, albeit with
marginal differences. Notably, no algorithm surpasses
DESN, while CMAES and NOA emerge as the most
competitive algorithms, with DE being the most
competitive approach.

Alternatively, resorting to statistical analysis and
non-parametric tests becomes necessary when
standard performance metrics fail to comprehensively

18



IECE Transactions on Swarm and Evolutionary Learning

Table 3. Statistical results for benchmark functions in 30 dimensions (Part 2).
Function Algorithms

No Metric DESN DE CMAES RSA RUN NOA SA PSO GA

F11
Average 1.14E+03 1.50E+04 3.69E+05 4.63E+07 3.31E+03 1.48E+03 1.96E+04 9.72E+03 9.69E+04
STD 2.06E+00 1.04E+04 2.73E+07 4.62E+08 9.28E+02 1.44E+02 7.31E-12 3.01E+03 1.40E+07

Rank Avg 1 5 8 9 3 2 6 4 7

F12
Average 1.16E+05 6.55E+08 2.22E+08 9.27E+09 7.19E+08 1.34E+07 8.45E+09 2.90E+09 8.23E+09
STD 1.11E+04 2.49E+08 2.33E+09 6.48E+09 1.31E+08 8.43E+06 1.92E-06 1.20E+09 2.94E+09

Rank Avg 1 4 3 9 5 2 8 6 7

F13
Average 1.71E+03 7.61E+07 1.27E+08 7.14E+09 7.50E+07 1.13E+06 1.92E+10 1.94E+09 1.07E+10
STD 1.18E+01 5.42E+07 1.58E+09 1.12E+10 4.99E+07 1.04E+06 1.15E-05 1.11E+09 6.34E+09

Rank Avg 1 4 5 7 3 2 9 6 8

F14
Average 1.49E+03 1.45E+07 6.60E+05 2.84E+07 2.39E+04 6.03E+03 8.01E+05 4.80E+06 9.61E+06
STD 1.15E+01 2.11E+07 8.79E+06 2.45E+08 2.06E+04 1.18E+04 1.17E-10 4.25E+06 1.77E+07

Rank Avg 1 8 4 9 3 2 5 6 7

F15
Average 1.67E+03 2.17E+07 3.24E+07 4.39E+08 7.18E+05 9.81E+04 1.03E+09 5.98E+08 5.37E+08
STD 6.23E+00 2.23E+07 5.26E+08 2.31E+09 1.62E+06 2.08E+05 0.00E+00 4.32E+08 5.09E+08

Rank Avg 1 4 5 6 3 2 9 8 7

F16
Average 1.95E+03 4.39E+03 3.25E+03 7.78E+03 3.58E+03 3.86E+03 9.44E+03 4.28E+03 5.01E+03
STD 1.71E-01 4.13E+02 1.58E+03 1.11E+04 2.17E+02 3.81E+02 1.83E-12 4.35E+02 5.53E+02

Rank Avg 1 6 2 8 3 4 9 5 7

F17
Average 1.89E+03 3.01E+03 3.02E+03 1.59E+04 2.13E+03 2.53E+03 5.84E+04 3.39E+03 4.13E+03
STD 1.31E+01 2.55E+02 4.78E+04 1.10E+05 6.19E+01 2.52E+02 1.46E-11 2.87E+02 6.37E+04

Rank Avg 1 4 5 8 2 3 9 6 7

F18
Average 1.07E+05 6.32E+07 3.68E+06 1.86E+08 6.52E+05 1.12E+06 3.63E+07 1.05E+07 1.68E+07
STD 2.58E+04 6.04E+07 2.50E+07 3.03E+08 5.42E+05 1.48E+06 7.49E-09 1.10E+07 1.58E+08

Rank Avg 1 8 4 9 2 3 7 5 6

F19
Average 2.01E+03 2.24E+07 7.67E+07 8.41E+08 8.85E+05 1.94E+05 8.37E+09 8.22E+08 2.99E+08
STD 1.11E+01 1.32E+08 1.29E+09 3.55E+09 1.32E+06 4.38E+05 1.92E-06 5.17E+08 4.04E+08

Rank Avg 1 4 5 8 3 2 9 7 6

F20
Average 2.06E+03 3.15E+03 2.64E+03 3.31E+03 2.28E+03 2.91E+03 3.77E+03 2.83E+03 2.93E+03
STD 2.16E-01 2.19E+02 1.91E+02 2.67E+02 3.45E+01 3.01E+02 1.37E-12 2.13E+02 3.62E+02

Rank Avg 1 7 3 8 2 5 9 4 6

(a) Function 12 (b) Function 13

Figure 3. Convergences of hybrid functions.

compare algorithms. In such cases, well-established
non-parametric models can be utilized to analyze and
rank meta-heuristic algorithms [30]. The Friedman
test, also known as Friedman’s two-way ANOVA, is a
prominent non-parametric test widely employed for
analyzing differences among more than two related

samples [31, 32]. Table 5 displays the Average Rank
computed using the Friedman test for all algorithms
under comparison. As shown in Table 5, the DESN
proposal exhibited the highest rank among the
algorithms considered. Moreover, the p-value signifies
significant differences among the assessed algorithms.

19



IECE Transactions on Swarm and Evolutionary Learning

Table 4. Statistical results for benchmark functions in 30 dimensions (Part 3).
Function Algorithms

No Metric DESN DE CMAES RSA RUN NOA SA PSO GA

F21
Average 2.35E+03 2.60E+03 2.50E+03 2.69E+03 2.64E+03 2.53E+03 2.88E+03 2.68E+03 2.75E+03
STD 6.98E-02 3.45E+01 4.95E+01 1.17E+02 2.00E+01 2.93E+01 1.37E-12 2.66E+01 2.18E+01

Rank Avg 1 4 2 7 5 3 9 6 8

F22
Average 2.31E+03 1.05E+04 9.67E+03 8.06E+03 4.99E+03 2.33E+03 1.15E+04 6.00E+03 7.05E+03
STD 7.65E-01 6.85E+02 4.25E+02 6.91E+02 1.56E+02 2.78E+00 0.00E+00 8.72E+02 1.14E+03

Rank Avg 1 8 7 6 3 2 9 4 5

F23
Average 2.67E+03 3.00E+03 2.84E+03 3.51E+03 2.99E+03 2.89E+03 3.65E+03 3.00E+03 3.31E+03
STD 1.61E-01 3.81E+01 8.42E+01 3.00E+02 2.27E+01 2.91E+01 1.83E-12 1.99E+01 8.65E+01

Rank Avg 1 5 2 7 4 3 8 5 6

F24
Average 2.87E+03 3.20E+03 3.02E+03 3.57E+03 3.21E+03 3.05E+03 4.37E+03 3.13E+03 3.44E+03
STD 5.13E-01 3.88E+01 1.44E+02 2.03E+02 2.70E+01 2.99E+01 9.14E-13 1.66E+01 1.13E+02

Rank Avg 1 5 2 8 6 3 9 4 7

F25
Average 2.89E+03 3.19E+03 3.04E+03 4.50E+03 3.68E+03 2.91E+03 2.11E+04 5.81E+03 1.04E+04
STD 4.22E-02 1.10E+02 1.43E+03 1.37E+03 7.46E+01 7.35E+00 3.66E-12 1.25E+03 1.89E+03

Rank Avg 1 4 3 6 5 2 9 7 8

F26
Average 4.43E+03 6.38E+03 5.22E+03 1.04E+04 7.91E+03 3.61E+03 1.31E+04 7.47E+03 1.06E+04
STD 4.24E+01 3.18E+02 1.08E+03 3.56E+03 2.40E+02 1.04E+03 0.00E+00 5.72E+02 1.11E+03

Rank Avg 2 4 3 7 6 1 9 5 8

F27
Average 3.20E+03 3.20E+03 3.23E+03 3.91E+03 3.37E+03 3.29E+03 4.69E+03 3.27E+03 3.92E+03
STD 3.80E-01 1.05E-04 3.40E+02 6.13E+02 1.43E+01 2.35E+01 1.83E-12 1.45E+01 2.26E+02

Rank Avg 1 1 2 6 5 4 8 3 7

F28
Average 3.22E+03 3.30E+03 3.38E+03 6.27E+03 4.22E+03 3.24E+03 1.42E+04 4.46E+03 6.50E+03
STD 4.68E-01 5.07E-02 8.43E+02 4.07E+03 1.24E+02 2.51E+01 0.00E+00 3.86E+02 5.66E+02

Rank Avg 1 3 4 7 5 2 9 6 8

F29
Average 3.48E+03 5.22E+03 6.91E+03 1.59E+06 4.26E+03 4.98E+03 9.06E+03 5.00E+03 6.45E+03
STD 1.82E+00 3.98E+02 1.57E+05 1.59E+07 8.89E+01 3.20E+02 5.48E-12 2.60E+02 1.82E+04

Rank Avg 1 5 7 9 2 3 8 4 6

F30
Average 5.98E+03 1.05E+07 6.21E+07 1.49E+09 1.94E+07 3.21E+06 1.70E+09 3.63E+08 5.36E+08
STD 5.19E+01 1.25E+07 9.65E+08 1.44E+09 1.58E+07 2.77E+06 0.00E+00 1.73E+08 3.74E+08

Rank Avg 1 3 5 8 4 2 9 6 7

(a) Function 23 (b) Function 30

Figure 4. Convergences of composition functions.

On the other hand, in these types of methods it
is quite important to determine its computational
consumption. Usually, comparisons of processing time
tend to be considered through graphical schemes like
boxplots [34]. Nonetheless, different studies have
demonstrated the null-reliability of said approaches

since the computational requirements of an algorithm
change according to many aspects like the processor
or other specifications [33, 35]. Hence, to demonstrate
the computational requirements of the analyzed
methods in this work, a Big O analysis is applied.

20



IECE Transactions on Swarm and Evolutionary Learning

Essentially, the Big O is a mathematical notation
utilized in data science to gauge the computational
complexity of an algorithm [33]. In simple terms,
the Big O analysis establishes four different types
of complexity for any algorithm: linear complexity,
quadratic complexity, logarithmic complexity, and
exponential complexity. The lineal complexity defines
those code lines that involve only mathematical
operations without being in a loop. The rest of the
complexities involve those code lines that belong to a
looping process, considering as quadratic complexity
those that operate on a linear cumulative iterative
process. In contrast, the logarithmic and exponential
complexities lie in loops whose iterative process is
precisely logarithmic or exponential, respectively. It
is worth mentioning that most of the evolutionary
computation algorithms have quadratic complexity
due to the nature of their programming, while the last
two complexities are usually appreciated in machine
learning and data mining approaches. Table 6
outlines the Big O notation for the nine examined
algorithms. It is evident that NOA exhibited the
highest computational complexity among them. As
can be noticed, all the algorithms present a quadratic
complexity since all of them report an iterative
polynomial notation. In simple terms, the exponents
represent the number of nested loops, and their
respective constants indicate the code line inside said
nested loop. As the reader can infer, the higher the
number of nested loops and their constants, the higher
the complexity of the algorithm.

Table 5. Friedman Rank Test.

Algorithms Friedman Test Rank
DESN 1.0833 1
DE 4.8167 5

CMAES 3.7833 3
RSA 7.5333 8
RUN 3.9667 4
NOA 2.7833 2
SA 8.3667 9
PSO 5.5167 6
GA 7.15 7

p-value 3.71E-35

Similarly, Figure 5 illustrates the Big O performances
of the algorithms, highlighting NOA’s significantly
higher computational expense compared to
others. Conversely, DESN emerged as the most
computationally demanding method, followed closely
by RSA, while DE and GA demonstrated the least
computational overhead due to their algorithmic

Table 6. Big O notation for the algorithms.
Algorithm Big O Equation Notation
DESN 24n3 + 37n2 + 10n+ 16 O(n3)
DE 4n3 + 21n2 + 8n+ 15 O(n3)
CMAES 15n2 + 34n+ 48 O(n2)
RSA 11n3 + 16n2 + 10n+ 14 O(n3)
RUN 4n3 + 81n2 + 12n+ 28 O(n3)
NOA 8n4 + 40n3 + 35n2 + 17n+ 20 O(n4)
SA 5n3 + 22n2 + n+ 26 O(n3)
PSO 5n3 + 17n2 + 17n+ 20 O(n3)
GA 5n3 + 27n2 + 11n+ 13 O(n3)

structures. However, DESN’s computational cost
is comparable to that of RSA, rendering it a less
competitive option.

Figure 5. Big O graphical analysis.

5 Conclusions
This study introduces a novel evolutionary strategy
named DESN, which builds upon differential
evolution principles. The algorithm features an
iterative selection process that dynamically alternates
between two popular mutation schemes based on
the number of function evaluations. Additionally,
it enhances the traditional greedy selection stage
of DE by incorporating comparisons not only with
the current individual but also with neighboring
individuals, representing approximately 25% of
the population. These adaptations have notably
elevated the algorithm’s performance, demonstrating
superiority over DE and other approaches across all
metric experiments using the CEC-2017 test problems.

The evaluation, which includes Friedman’s
non-parametric test and Big O analysis, underscores
the remarkable competitiveness of the proposed
algorithm. However, to further validate its efficacy,
DESN necessitates evaluation across diverse

21



IECE Transactions on Swarm and Evolutionary Learning

benchmark function datasets and testing within
high-dimensional problem domains. Furthermore,
it is essential to explore its applicability in digital
image processing and training machine learning
algorithms to ascertain its real-world performance.
These avenues, among others, constitute potential
directions for future research on DESN. Despite
these avenues for exploration, the findings of this
study position DESN as a promising evolutionary
strategy within the current landscape of optimization
techniques.

However, we recognize the challenges associated with
this algorithm in certain tasks. We acknowledge its
potential in various domains, includingmulti-objective
optimization, in real-world and high-dimensional
engineering problems. Consequently, future work will
focus on developing this methodology to make it more
robust and applicable to different problems, such as
implementations with machine learning models.

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Storn, R., & Price, K. (1997). Differential evolution–a

simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization,
11, 341-359. [CrossRef]

[2] Neri, F., & Tirronen, V. (2019). Recent advances in
differential evolution: A survey and experimental
analysis. Artificial Intelligence Review, 33, 61–106.
[CrossRef]

[3] Sloss, A. N., & Gustafson, S. (2019). 2019 Evolutionary
Algorithms Review. Genetic Programming Theory and
Practice XVII, 307–344. [CrossRef]

[4] Das, S., & Suganthan, P. N. (2010). Differential
evolution: A survey of the state-of-the-art. IEEE
Transactions on Evolutionary Computation, 15(1), 4–31.
[CrossRef]

[5] Pant, M., Zaheer, H., Garcia-Hernandez, L., &
Abraham, A. (2020). Differential Evolution: A

review of more than two decades of research.
Engineering Applications of Artificial Intelligence, 90,
103479. [CrossRef]

[6] Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang,
K. M. (2022). Differential evolution with modified
initialization scheme using chaotic oppositional based
learning strategy. Alexandria Engineering Journal,
61(12), 11835–11858. [CrossRef]

[7] Deng, L., Li, C., Lan, Y., Sun, G., & Shang, C. (2022).
Differential evolution with dynamic combination
based mutation operator and two-level parameter
adaptation strategy. Expert Systems with Applications,
192, 116298. [CrossRef]

[8] Zhang, J., & Sanderson, A. C. (2007, September).
JADE: Self-adaptive differential evolution with fast
and reliable convergence performance. In 2007 IEEE
congress on evolutionary computation (pp. 2251-2258).
IEEE. [CrossRef]

[9] Mohamed, A. W. (2015). An improved differential
evolution algorithm with triangular mutation
for global numerical optimization. Computers and
Industrial Engineering, 85, 359–375. [CrossRef]

[10] Prabha, S., & Yadav, R. (2020). Differential evolution
with biological-based mutation operator. Engineering
Science and Technology, an International Journal, 23(2),
253–263. [CrossRef]

[11] Pant, M., Ali, M., & Singh, V. P. (2008). Differential
evolution with parent centric crossover. UKSIM
European Symposium on Computer Modeling and
Simulation, 2, 141–146. [CrossRef]

[12] Qiu, X., Tan, K. C., & Xu, J. X. (2016). Multiple
exponential recombination for differential evolution.
IEEE Transactions on Cybernetics, 47(4), 995–1006.
[CrossRef]

[13] Zeng, Z., Zhang, M., Chen, T., & Hong, Z. (2021).
A new selection operator for differential evolution
algorithm. Knowledge-Based Systems, 226, 107150.
[CrossRef]

[14] Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi,
A. H. (2021). Evolutionary machine learning: A
survey. ACM Computing Surveys (CSUR), 54(8), 1-35.
[CrossRef]

[15] Li, N., Ma, L., Xing, T., Yu, G., Wang, C., Wen, Y., ... &
Gao, S. (2023). Automatic design of machine learning
via evolutionary computation: A survey. Applied Soft
Computing, 143, 110412. [CrossRef]

[16] Zhan, Z. H., Li, J. Y., & Zhang, J. (2022). Evolutionary
deep learning: A survey. Neurocomputing, 483, 42-58.
[CrossRef]

[17] Gad, A. G. (2022). Particle swarm optimization
algorithm and its applications: a systematic review.
Archives of computational methods in engineering, 29(5),
2531-2561. [CrossRef]

[18] Katoch, S., Chauhan, S. S., & Kumar, V. (2021).
A review on genetic algorithm: past, present, and

22

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s10462-009-9137-2
https://doi.org/10.1007/978-3-030-39958-0_16
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1016/j.engappai.2020.103479
https://doi.org/10.1016/j.aej.2022.05.028
https://doi.org/10.1016/j.eswa.2021.116298
https://doi.org/10.1109/cec.2007.4424751
https://doi.org/10.1016/j.cie.2015.04.012
https://doi.org/10.1016/j.jestch.2019.05.012
https://doi.org/10.1109/EMS.2008.64
https://doi.org/10.1109/TCYB.2016.2536167
https://doi.org/10.1016/j.knosys.2021.107150
https://doi.org/10.1145/3467477
https://doi.org/10.1016/j.asoc.2023.110412
https://doi.org/10.1016/j.neucom.2022.01.099
https://doi.org/10.1007/s11831-021-09694-4


IECE Transactions on Swarm and Evolutionary Learning

future.Multimedia tools and applications, 80, 8091-8126.
[CrossRef]

[19] Price, K., Storn, R. M., & Lampinen, J. A. (2006).
Differential evolution: a practical approach to global
optimization. Springer Science & Business Media.

[20] Liang, J. J., Qu, B. Y., Suganthan, P. N., &
Hernández-Díaz, A. G. (2013). Problem definitions
and evaluation criteria for the CEC 2013 special
session on real-parameter optimization. Computational
Intelligence Laboratory, ZhengzhouUniversity, Zhengzhou,
China and Nanyang Technological University, Singapore,
Technical Report, 201212(34), 281–295. [CrossRef]

[21] Brest, J., Greiner, S., Boskovic, B., Mernik, M., &
Zumer, V. (2006). Self-adapting control parameters
in differential evolution: A comparative study on
numerical benchmark problems. IEEE Transactions on
Evolutionary Computation, 10(6), 646–657. [CrossRef]

[22] Hansen, N., & Ostermeier, A. (2001). Completely
Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation, 9(2), 159–195.
[CrossRef]

[23] Abualigah, L., Elaziz, M. A., Sumari, P., Geem,
Z. W., & Gandomi, A. H. (2022). Reptile Search
Algorithm (RSA): A nature-inspired meta-heuristic
optimizer. Expert Systems with Applications, 191, 116158.
[CrossRef]

[24] Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu,
X., & Chen, H. (2021). RUN beyond the metaphor: An
efficient optimization algorithm based on Runge Kutta
method. Expert Systems with Applications, 181, 115079.
[CrossRef]

[25] Basset, M. A., Mohamed, R., Jameel, M., &
Abouhawwash, M. (2023). Nutcracker optimizer: A
novel nature-inspired metaheuristic algorithm for
global optimization and engineering design problems.
Knowledge-Based Systems, 262, 110248. [CrossRef]

[26] Bertsimas, D., & Tsitsiklis, J. (1993). Simulated
Annealing. Statistical Science, 8(1), 10–15. [CrossRef]

[27] Kennedy, J., & Eberhart, R. (1995). Particle Swarm
Optimization. Proceedings of ICNN’95 - International
Conference on Neural Networks, 4, 1942–1948. [CrossRef]

[28] Holland, J. H. (1984). Genetic Algorithms and
Adaptation. Adaptive Control of Ill-Defined Systems, 16,
317–333. [CrossRef]

[29] Garden, R. W., & Engelbrecht, A. P. (2014). Analysis
and Classification of Optimisation Benchmark
Functions and Benchmark Suites. IEEE Congress
on Evolutionary Computation (CEC), 1641–1649.
[CrossRef]

[30] Bagdonavicius, V., Kruopis, J., & Nikulin, M. S. (2013).
Nonparametric tests for complete data. JohnWiley & Sons.

[31] Friedman, M. (1937). The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association,
32(200), 675–701. [CrossRef]

[32] Derrac, J., García, S., Molina, D., & Herrera, F. (2011).
A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1), 3–18.
[CrossRef]

[33] Knuth, D. E. (1973). The Art of Computer Programming.
Addison-Wesley Publishing Co.

[34] Chen, T., Tang, K., Chen, G., & Yao, X. (2010).
Analysis of computational time of simple estimation
of distribution algorithms. IEEE Transactions on
Evolutionary Computation, 14(1), 1–22. [CrossRef]

[35] Papadimitriou, C. H. (2003). Computational
complexity. Encyclopedia of Computer Science, 260–265.
[CrossRef]

Elivier Reyes-Davila received a B.S. degree in
Electronics and Communications Engineering
from the Autonomous University of Zacatecas,
Mexico, in 2020. In 2018, he was an exchange
student at the University of Manitoba, Canada.
He is currently pursuing an M.S. degree in
Electronic Engineering and Computer Sciences
with theUniversity of Guadalajara. His current
research interests include artificial intelligence,
evolutionary algorithms, and cybersecurity.

Eduardo H. Haro received a B.S. degree
in Automatic Control from the Instituto
Tecnologico de Ciudad Guzman (ITCG) in
2017. Additionally, he is a professor in
the Engineering Department of the Centro
Universitario de la Costa Sur (CUCSUR),
and he is currently finishing his Ph.D in
Electronic and Computation Sciences at the
Centro Universitario de Ciencias Exactas e
Ingenierías (CUCEI) from the Guadalajara

University. His research involves meta-heuristic algorithm
design, multi-objective optimization, and hybridization between
evolutionary computation and machine learning techniques. His
developments specialize in energy-saving, automatic control, and
real-world applications manufacturing.

Angel Casas-Ordaz received a B.S. degree
in Electronic Engineering from the Instituto
Tecnológico de Ciudad Juárez in 2018, and
later the M.Sc. degree in Electronics and
Computer Engineering from the Universidad
de Guadalajara at the Centro Universitario
de Ciencias Exactas e Ingenierías (CUCEI)
in 2022; He is currently a Ph.D. student in
Electronics and Computer Science at the same
campus. During his postgraduate research,

he specialized in the field of Evolutionary Computation and
Image Segmentation. His current research interests include
Evolutionary Computation and Artificial Intelligence, specializing
in Metaheuristic Algorithms in the Automatic Control and
Intelligent Systems Research Group.

23

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.13140/RG.2.1.1958.4083
https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.knosys.2022.110248
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-1-4684-8941-5_21
https://doi.org/10.1109/CEC.2014.6900240
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1109/TEVC.2009.2040019
https://doi.org/10.1002/0471667196.ess0556


IECE Transactions on Swarm and Evolutionary Learning

Prof. Diego Oliva received a B.S. degree in
Electronics and Computer Engineering from
the Industrial Technical Education Center
(CETI) of Guadalajara, Mexico, in 2007 and
an M.Sc. degree in Electronic Engineering
and Computer Sciences from the University
of Guadalajara, Mexico, in 2010. He obtained
a Ph. D. in Informatics in 2015 from
the Universidad Complutense de Madrid.
Currently, he is an Associate Professor at

the University of Guadalajara in Mexico. He is a member
of the Mexican National Research System (SNII), a Senior
member of the IEEE, and a member of the Mexican Academy of
Computer Sciences (AMEXCOMP). His research interests include
evolutionary and swarm algorithms, hybridization of evolutionary
and swarm algorithms, and computational intelligence.

Prof. Saúl Zapotecas-Martínez earned
his Ph.D. in Computer Science from the
Center for Research and Advanced Studies
of the National Polytechnic Institute
(CINVESTAV-IPN) in 2013. Following his
doctoral studies, he served as an assistant
professor in the Department of Electrical and
Electronic Engineering at Shinshu University
in Nagano, Japan, until 2016. From January
2017 to March 2022, Dr. Zapotecas-Martínez

held the position of visiting professor in the Department
of Applied Mathematics and Systems at the Metropolitan
Autonomous University in Mexico City. Currently, he serves as
a Full-Time Researcher at the Coordination of Computational
Sciences at the National Institute of Astrophysics, Optics,
and Electronics (INAOE) in Mexico. His current research
interests include evolutionary computing, machine learning,
neuroevolution, and their applications to optimization problems
and computer vision.

Prof. Mohammed El-Abd is a Professor
of Computer Engineering at the American
University of Kuwait (AUK). He serves as
the Dean of the College of Engineering and
Applied Sciences at AUK. Prof. Mohammed
obtained his Ph.D. from the ECEDepartment at
the University of Waterloo (UW) in Canada in
2008. He obtained his B.Eng. and M.Sc. from
the ECE Department at Ain Shams University
in Egypt in 1998 and 2003, respectively. He

was awarded the AUK-Dartmouth fellowship in 2012. He
is an Associate Editor for the IEEE Transactions on Artificial
Intelligence, the IEEE Transactions on Learning Technologies,
Swarm and Evolutionary Computation (SWEVO), and Computers
& Electrical Engineering. He was also a Guest Editor for the IEEE
Transactions on Education. He is the founding chair of the IEEE
Symposium on Cooperative Metaheuristics (IEEE-SCM) and was
the general co-chair of the 2023 IEEEGlobal Engineering Education
Conference (EDUCON). As a co-author, he was awarded the
best paper award at the IEEE Global Engineering Education
Conference in 2015 and the best poster award at the 14thACS/IEEE
International Conference on Computer Systems and Applications
in 2017. Prof. El-Abd has been named, since 2020, among the
top 2% of researchers in artificial intelligence as per the Stanford
University–Elsevier list.

24


	Introduction
	General Background
	Differential evolution algorithm
	Initialization
	Mutation
	Crossover
	Selection


	Proposed Approach
	Experimental Study and Analysis of Results
	Conclusions
	Elivier Reyes-Davila
	Eduardo H. Haro
	Angel Casas-Ordaz
	Prof. Diego Oliva
	Prof. Saúl Zapotecas-Martínez
	Prof. Mohammed El-Abd


