-
CiteScore
-
Impact Factor
Volume 1, Issue 2, IECE Transactions on Advanced Computing and Systems
Volume 1, Issue 2, 2024
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Advanced Computing and Systems, Volume 1, Issue 2, 2024: 63-77

Open Access | Research Article | 15 May 2024
FuzzDL-HeartPredict: Heart Attack Risk Prediction using Fuzzy Logic and Deep Learning
1 Department of Computer Science, Qurtuba University of Science and Information Technology, Peshawar Campus, Pakistan
2 School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, China
3 School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou 310018, China
4 School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
5 Department of Computer Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
6 Department of Computer Science, Shaikh Zayed Islamic Centre, University of Peshawar, Peshawar, Pakistan
7 Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan
8 Department of Computer and Software Technology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
* Corresponding Author: Tariq Hussain, [email protected]
Received: 19 January 2024, Accepted: 27 April 2024, Published: 15 May 2024  
Abstract
Across the globe, heart diseases rank as the top cause of death, with their incidence steadily rising. However, early detection before a cardiac event (e.g., cardiac arrest) remains a significant challenge. Although the healthcare sector possesses extensive data on heart disease, the effective use of this data for timely detection is essential to protect from such events. This paper proposes an innovative approach using fuzzy logic (FL), convolutional neural network (CNN) models, and feature selection to more accurately assess the risk of heart attacks. Our study also emphasizes the importance of data preprocessing, including data transformation, cleaning, and normalization, to facilitate the availability of trustworthy and high-quality information for analysis. We employed lassoCV for feature selection to identify key factors contributing to heart attack risk. Furthermore, we developed a novel 1D Convolutional Neural Network (1D-CNN) especially tailored for linear data to improve neural network training and the significant potential of advanced Artificial Intelligence (AI) techniques in revolutionizing heart attack risk estimation. We used fuzzy logic (FL) to handle data uncertainties in the risk prediction phase, enhancing prediction accuracy. Our proposed model achieved remarkable performance metrics: an accuracy of 98.5%, 100% precision, and 98.5% F1-score, which outperforms when compared with its counterparts.

Graphical Abstract
FuzzDL-HeartPredict: Heart Attack Risk Prediction using Fuzzy Logic and Deep Learning

Keywords
healthcare
deep learning
fuzzy logic
CNN
heart attack prediction

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. World Health Organization, & World Bank Group. (2018). Delivering Quality Health Services: A Global Imperative. OECD Publishing.
    [Google Scholar]
  2. Lu, W., Yuan, J., Liu, Z., Su, Z., Shen, Y., Li, S., & Zhang, H. (2024). Worldwide trends in mortality for hypertensive heart disease from 1990 to 2019 with projection to 2034: data from the Global Burden of Disease 2019 study. European Journal of Preventive Cardiology, 31(1), 23-37.
    [CrossRef]   [Google Scholar]
  3. Martin, S. S., Aday, A. W., Almarzooq, Z. I., Anderson, C. A., Arora, P., Avery, C. L., ... & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2024). 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation, 149(8), e347-e913.
    [CrossRef]   [Google Scholar]
  4. Khan, K. J., & Raza, V. F. (2021). Specialist shortage in developing countries: comprehending delays in care. BMJ Case Reports CP, 14(1), e235542.
    [CrossRef]   [Google Scholar]
  5. Heidt, B., Siqueira, W. F., Eersels, K., Diliën, H., van Grinsven, B., Fujiwara, R. T., & Cleij, T. J. (2020). Point of care diagnostics in resource-limited settings: A review of the present and future of PoC in its most needed environment. Biosensors, 10(10), 133.
    [CrossRef]   [Google Scholar]
  6. Valentin, G., Nielsen, C. V., Nielsen, A. S. M., Tonnesen, M., Bliksted, K. L., Jensen, K. T., ... & Oestergaard, L. G. (2023). Bridging inequity gaps in healthcare systems while educating future healthcare professionals—the social health bridge-building programme. International Journal of Environmental Research and Public Health, 20(19), 6837.
    [CrossRef]   [Google Scholar]
  7. Singhania, K., & Reddy, A. (2024). Improving Preventative Care and Health Outcomes for Patients with Chronic Diseases using Big Data-Driven Insights and Predictive Modeling. International Journal of Applied Health Care Analytics, 9(2), 1–14. Retrieved from https://norislab.com/index.php/IJAHA/article/view/60
    [Google Scholar]
  8. Osei, E., & Mashamba-Thompson, T. P. (2021). Mobile health applications for disease screening and treatment support in low-and middle-income countries: A narrative review. Heliyon, 7(3).
    [CrossRef]   [Google Scholar]
  9. Armoundas, A. A., Narayan, S. M., Arnett, D. K., Spector-Bagdady, K., Bennett, D. A., Celi, L. A., ... & Al-Zaiti, S. S. (2024). Use of artificial intelligence in improving outcomes in heart disease: a scientific statement from the American Heart Association. Circulation, 149(14), e1028-e1050.
    [CrossRef]   [Google Scholar]
  10. Omarov, B., Saparkhojayev, N., Shekerbekova, S., Akhmetova, O., Sakypbekova, M., Kamalova, G., ... & Akanova, Z. (2022). Artificial Intelligence in Medicine: Real Time Electronic Stethoscope for Heart Diseases Detection. Computers, Materials & Continua, 70(2).
    [Google Scholar]
  11. Chang, V., Bhavani, V. R., Xu, A. Q., & Hossain, M. A. (2022). An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics, 2, 100016.
    [CrossRef]   [Google Scholar]
  12. Ahsan, M. M., & Siddique, Z. (2022). Machine learning-based heart disease diagnosis: A systematic literature review. Artificial Intelligence in Medicine, 128, 102289.
    [CrossRef]   [Google Scholar]
  13. Bates, D. W., Auerbach, A., Schulam, P., Wright, A., & Saria, S. (2020). Reporting and implementing interventions involving machine learning and artificial intelligence. Annals of internal medicine, 172(11_Supplement), S137-S144.
    [CrossRef]   [Google Scholar]
  14. Yang, X., Huang, K., Yang, D., Zhao, W., & Zhou, X. (2024). Biomedical big data technologies, applications, and challenges for precision medicine: a review. Global Challenges, 8(1), 2300163.
    [CrossRef]   [Google Scholar]
  15. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7), 3523-3542.
    [CrossRef]   [Google Scholar]
  16. Tsuneki, M. (2022). Deep learning models in medical image analysis. Journal of Oral Biosciences, 64(3), 312-320.
    [CrossRef]   [Google Scholar]
  17. Pal, M., & Parija, S. (2021, March). Prediction of heart diseases using random forest. In Journal of Physics: Conference Series (Vol. 1817, No. 1, p. 012009). IOP Publishing.
    [CrossRef]   [Google Scholar]
  18. Maji, S., & Arora, S. (2019). Decision tree algorithms for prediction of heart disease. In Information and Communication Technology for Competitive Strategies: Proceedings of Third International Conference on ICTCS 2017 (pp. 447-454). Springer Singapore.
    [CrossRef]   [Google Scholar]
  19. Suhaimi, M. S. A., Ramli, N. A., & Muhammad, N. (2024, March). Heart disease prediction using ensemble of k-nearest neighbour, random forest and logistic regression method. In AIP Conference Proceedings (Vol. 2895, No. 1). AIP Publishing.
    [CrossRef]   [Google Scholar]
  20. Ashri, S. E., El-Gayar, M. M., & El-Daydamony, E. M. (2021). HDPF: heart disease prediction framework based on hybrid classifiers and genetic algorithm. ieee access, 9, 146797-146809.
    [CrossRef]   [Google Scholar]
  21. Hameed, A. Z., Ramasamy, B., Shahzad, M. A., & Bakhsh, A. A. (2021). Efficient hybrid algorithm based on genetic with weighted fuzzy rule for developing a decision support system in prediction of heart diseases. The Journal of Supercomputing, 77, 10117-10137.
    [CrossRef]   [Google Scholar]
  22. Jansi Rani, S. V., Chandran, K. S., Ranganathan, A., Chandrasekharan, M., Janani, B., & Deepsheka, G. (2022). Smart wearable model for predicting heart disease using machine learning: wearable to predict heart risk. Journal of Ambient Intelligence and Humanized Computing, 13(9), 4321-4332.
    [CrossRef]   [Google Scholar]
  23. Waberi, O. A., & Kitiş, Ş. (2023). Prediction of Heart Attack Risk with Data Mining by Using Blood Tests and Physical Data. In International Congress of Electrical and Computer Engineering (pp. 17-29).
    [CrossRef]   [Google Scholar]
  24. Dileep, P., Rao, K. N., Bodapati, P., Gokuruboyina, S., Peddi, R., Grover, A., ... & Sheetal, A. (2023). An automatic heart disease prediction using cluster-based bi-directional LSTM (C-BiLSTM) algorithm. Neural Computing and Applications, 35(10), 7253-7266.
    [CrossRef]   [Google Scholar]
  25. Lee, H. G., Noh, K. Y., & Ryu, K. H. (2007). Mining biosignal data: coronary artery disease diagnosis using linear and nonlinear features of HRV. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 218-228).
    [CrossRef]   [Google Scholar]
  26. Hidayat, S., Ramadhan, H. M. T., & Puspaningrum, E. Y. (2023). Comparison of K-nearest neighbor and decision tree methods using principal component analysis technique in heart disease classification. Indonesian Journal of Data and Science, 4(2), 87-96.
    [CrossRef]   [Google Scholar]
  27. Suneetha, K., Challa, K., Avanija, J., Raparthi, Y., & Kallam, S. (2022). Comparative Analysis on Heart Disease Prediction Using Convolutional Neural Network with Adapted Backpropagation. In Intelligent Computing and Applications: Proceedings of ICDIC 2020 (pp. 465-477).
    [CrossRef]   [Google Scholar]
  28. Nandy, S., Adhikari, M., Balasubramanian, V., Menon, V. G., Li, X., & Zakarya, M. (2023). An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications, 35(20), 14723-14737.
    [CrossRef]   [Google Scholar]
  29. Rani, P., Kumar, R., Ahmed, N. M., & Jain, A. (2021). A decision support system for heart disease prediction based upon machine learning. Journal of Reliable Intelligent Environments, 7(3), 263-275.
    [CrossRef]   [Google Scholar]
  30. Bhatt, C. M., Patel, P., Ghetia, T., & Mazzeo, P. L. (2023). Effective heart disease prediction using machine learning techniques. Algorithms, 16(2), 88.
    [CrossRef]   [Google Scholar]
  31. Menshawi, A., Hassan, M. M., Allheeib, N., & Fortino, G. (2023). A Hybrid Generic Framework for Heart Problem diagnosis based on a machine learning paradigm. Sensors, 23(3), 1392.
    [CrossRef]   [Google Scholar]
  32. Saeedbakhsh, S., Sattari, M., Mohammadi, M., Najafian, J., & Mohammadi, F. (2023). Diagnosis of coronary artery disease based on machine learning algorithms support vector machine, artificial neural network, and random forest. Advanced Biomedical Research, 12(1), 51.
    [CrossRef]   [Google Scholar]
  33. Ozcan, M., & Peker, S. (2023). A classification and regression tree algorithm for heart disease modeling and prediction. Healthcare Analytics, 3, 100130.
    [CrossRef]   [Google Scholar]
  34. Biswas, N., Ali, M. M., Rahaman, M. A., Islam, M., Mia, M. R., Azam, S., ... & Moni, M. A. (2023). Machine Learning‐Based Model to Predict Heart Disease in Early Stage Employing Different Feature Selection Techniques. BioMed Research International, 2023(1), 6864343.
    [CrossRef]   [Google Scholar]
  35. Muhammad, L. J., & Algehyne, E. A. (2021). Fuzzy based expert system for diagnosis of coronary artery disease in Nigeria. Health and technology, 11(2), 319-329.
    [CrossRef]   [Google Scholar]
  36. Alkinani, M. H., Almazroi, A. A., Adhikari, M., & Menon, V. G. (2022). Design and analysis of logistic agent-based swarm-neural network for intelligent transportation system. Alexandria Engineering Journal, 61(10), 8325-8334.
    [CrossRef]   [Google Scholar]
  37. Rahman, A. U., Alsenani, Y., Zafar, A., Ullah, K., Rabie, K., & Shongwe, T. (2024). Enhancing heart disease prediction using a self-attention-based transformer model. Scientific Reports, 14(1), 514.
    [CrossRef]   [Google Scholar]
  38. Ambesange, S., Vijayalaxmi, A., Sridevi, S., & Yashoda, B. S. (2020, July). Multiple heart diseases prediction using logistic regression with ensemble and hyper parameter tuning techniques. In 2020 fourth world conference on smart trends in systems, security and sustainability (WorldS4) (pp. 827-832). IEEE.
    [CrossRef]   [Google Scholar]
  39. Berdinanth, M., Samah, S., Velusamy, S., Suseelan, A. D., & Sivanaiah, R. (2024). Analysis of traditional machine learning approaches on heart attacks prediction. Romanian Journal of Information Technology and Automatic Control, 34(1), 23-30.
    [CrossRef]   [Google Scholar]
  40. Almazroi, A. A., Aldhahri, E. A., Bashir, S., & Ashfaq, S. (2023). A clinical decision support system for heart disease prediction using deep learning. IEEE Access, 11, 61646-61659.
    [CrossRef]   [Google Scholar]
  41. Malibari, A. A. (2023). An efficient IoT-Artificial intelligence-based disease prediction using lightweight CNN in healthcare system. Measurement: Sensors, 26, 100695.
    [CrossRef]   [Google Scholar]
  42. Deepika, D., & Balaji, N. (2022). Effective heart disease prediction using novel MLP-EBMDA approach. Biomedical Signal Processing and Control, 72, 103318.
    [CrossRef]   [Google Scholar]
  43. Amin, S. U., Taj, S., Hussain, A., & Seo, S. (2024). An automated chest X-ray analysis for COVID-19, tuberculosis, and pneumonia employing ensemble learning approach. Biomedical Signal Processing and Control, 87, 105408.
    [CrossRef]   [Google Scholar]
  44. García-Ordás, M. T., Bayón-Gutiérrez, M., Benavides, C., Aveleira-Mata, J., & Benítez-Andrades, J. A. (2023). Heart disease risk prediction using deep learning techniques with feature augmentation. Multimedia Tools and Applications, 82(20), 31759-31773.
    [CrossRef]   [Google Scholar]
  45. Araujo, M., Pope, L., Still, S., & Yannone, C. (2021). Prediction of heart disease with machine learning techniques. Graduate Res, Kennesaw State Un.
    [Google Scholar]
  46. Ghosh, A., & Jana, S. (2022). A study on heart disease prediction using different classification models based on cross validation method. Int J Eng Res Technol.
    [CrossRef]   [Google Scholar]
  47. Liu, J., Dong, X., Zhao, H., & Tian, Y. (2022). Predictive classifier for cardiovascular disease based on stacking model fusion. Processes, 10(4), 749.
    [CrossRef]   [Google Scholar]
  48. Nourmohammadi-Khiarak, J., Feizi-Derakhshi, M. R., Behrouzi, K., Mazaheri, S., Zamani-Harghalani, Y., & Tayebi, R. M. (2020). New hybrid method for heart disease diagnosis utilizing optimization algorithm in feature selection. Health and Technology, 10(3), 667-678.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Shafiq, S., Akbar, W., Hussain, A., Hussain, T., Soomro, A., Khan, I., Haq, M. I. U., & Adnan, F. (2024). FuzzDL-HeartPredict: Heart Attack Risk Prediction using Fuzzy Logic and Deep Learning. IECE Transactions on Advanced Computing and Systems, 1(2), 63–77. https://doi.org/10.62762/TACS.2024.794425

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 199
PDF Downloads: 41

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2024 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
IECE Transactions on Advanced Computing and Systems

IECE Transactions on Advanced Computing and Systems

ISSN: 3067-7157 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.