-
CiteScore
-
Impact Factor
Volume 1, Issue 1, IECE Transactions on Advanced Computing and Systems
Volume 1, Issue 1, 2024
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Advanced Computing and Systems, Volume 1, Issue 1, 2024: 48-62

Open Access | Research Article | 31 March 2024
Enhancing Authentication Security in Internet of Vehicles: A Blockchain-Driven Approach for Trustworthy Communication
1 Department of Electrical Engineering, Sarhad University of Science \& Information Technology, 25000 Peshawar, Pakistan
2 Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea
3 Department of Computer Science and Information Technology, University of Malakand, Malakand 23050, Pakistan
4 Department of Computer Science, Qurtuba University of Science and Information Technology, Peshawar 25000, Pakistan
5 IMT Atlantique, 655 Avenue du Technopôle, 29280 Plouzané, France
* Corresponding Author: Zeeshan Ali Haider, [email protected]
Received: 26 February 2024, Accepted: 22 March 2024, Published: 31 March 2024  
Abstract
The Internet of Vehicles (IoVs) is an emerging technology that enhances transportation systems by enabling interactions between vehicles, infrastructure, and other entities. Securing IoV networks from cyber threats like eavesdropping, data tampering, and intrusions is a major challenge. This research presents a Blockchain-Enabled Secure Authentication Protocol for IoVs (BESA-IOV), which leverages blockchain’s decentralized and tamper-resistant nature for secure communication in vehicular networks. By utilizing ECC-based lightweight cryptography and blockchain-based public key management, it ensures strong authentication, confidentiality, and integrity. The results show that BESA-IOV significantly reduces authentication delay and computational cost compared to protocols such as NOTSA, RVAC, VANET-Auth, and SecureIoV. Extensive simulations indicate that BESA-IOV reduces authentication delay by 35% and computational overhead by 40%, enhancing real-time communication in the IoV environment. BESA-IOV is secure, efficient, and scalable for next-generation IoV systems.

Graphical Abstract
Enhancing Authentication Security in Internet of Vehicles: A Blockchain-Driven Approach for Trustworthy Communication

Keywords
internet of vehicles (IoV)
blockchain-enabled secure authentication protocol (BESA)
blockchain
secure authentication

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest. 

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Kebande, V. R., Awaysheh, F. M., Ikuesan, R. A., Alawadi, S. A., & Alshehri, M. D. (2021). A blockchain-based multi-factor authentication model for a cloud-enabled internet of vehicles. Sensors, 21(18), 6018.
    [Google Scholar]
  2. Kumar, S., Velliangiri, S., Karthikeyan, P., Kumari, S., Kumar, S., & Khan, M. K. (2021). A survey on the blockchain techniques for the Internet of Vehicles security. Transactions on Emerging Telecommunications Technologies, 35(4), e4317.
    [CrossRef]   [Google Scholar]
  3. Wang, C., Cheng, X., Li, J., He, Y., & Xiao, K. (2021). A survey: applications of blockchain in the internet of vehicles. EURASIP Journal on wireless communications and networking, 2021, 1-16.
    [CrossRef]   [Google Scholar]
  4. Rammohan, A. (2023). Revolutionizing Intelligent Transportation Systems with Cellular Vehicle-to-Everything (C-V2X) technology: Current trends, use cases, emerging technologies, standardization bodies, industry analytics and future directions. Vehicular Communications, 43, 100638.
    [CrossRef]   [Google Scholar]
  5. Siddiqui, S. A., Mahmood, A., Sheng, Q. Z., Suzuki, H., & Ni, W. (2021). A survey of trust management in the internet of vehicles. Electronics, 10(18), 2223.
    [CrossRef]   [Google Scholar]
  6. Chen, W., Wu, H., Chen, X., & Chen, J. (2022). A review of research on privacy protection of Internet of Vehicles based on blockchain. Journal of Sensor and Actuator Networks, 11(4), 86.
    [CrossRef]   [Google Scholar]
  7. Jabbar, R., Fetais, N., Kharbeche, M., Krichen, M., Barkaoui, K., & Shinoy, M. (2021). Blockchain for the Internet of Vehicles: How to use blockchain to secure vehicle-to-everything (V2X) communication and payment?. IEEE Sensors Journal, 21(14), 15807-15823.
    [CrossRef]   [Google Scholar]
  8. Fadhil, J. A., & Sarhan, Q. I. (2020, November). Internet of Vehicles (IoV): A survey of challenges and solutions. In 2020 21st International Arab Conference on Information Technology (ACIT) (pp. 1-10). IEEE.
    [CrossRef]   [Google Scholar]
  9. Liu, Y., Wang, J., Yan, Z., Wan, Z., & Jäntti, R. (2023). A survey on blockchain-based trust management for Internet of Things. IEEE Internet of Things Journal, 10(7), 5898-5922.
    [CrossRef]   [Google Scholar]
  10. Zhang, J., & Letaief, K. B. (2019). Mobile edge intelligence and computing for the internet of vehicles. Proceedings of the IEEE, 108(2), 246-261.
    [CrossRef]   [Google Scholar]
  11. Paul, A., Daniel, A., Ahmad, A., & Rho, S. (2015). Cooperative cognitive intelligence for internet of vehicles. IEEE Systems Journal, 11(3), 1249-1258.
    [CrossRef]   [Google Scholar]
  12. Karim, S. M., Habbal, A., Chaudhry, S. A., & Irshad, A. (2022). Architecture, protocols, and security in IoV: Taxonomy, analysis, challenges, and solutions. Security and Communication Networks, 2022(1), 1131479.
    [CrossRef]   [Google Scholar]
  13. Banerjee, S., Das, D., Chatterjee, P., Blakely, B., & Ghosh, U. (2023). A blockchain-enabled sustainable safety management framework for connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(6), 5271-5281.
    [CrossRef]   [Google Scholar]
  14. Dua, A., Kumar, N., Das, A. K., & Susilo, W. (2017). Secure message communication protocol among vehicles in smart city. IEEE Transactions on Vehicular Technology, 67(5), 4359-4373.
    [CrossRef]   [Google Scholar]
  15. Liu, J., Zhang, L., Li, C., Bai, J., Lv, H., & Lv, Z. (2022). Blockchain-based secure communication of intelligent transportation digital twins system. IEEE transactions on intelligent transportation systems, 23(11), 22630-22640.
    [CrossRef]   [Google Scholar]
  16. Qiao, Z., Ma, K., Zhou, Y., Yang, Q., Xia, Z., Yang, B., & Zhang, M. (2023). An anonymous and efficient certificate-based identity authentication protocol for VANET. IEEE Internet of Things Journal, 11(7), 11232-11245.
    [CrossRef]   [Google Scholar]
  17. Gupta, M., Patel, R. B., Jain, S., Garg, H., & Sharma, B. (2023). Lightweight branched blockchain security framework for Internet of Vehicles. Transactions on Emerging Telecommunications Technologies, 34(11), e4520.
    [CrossRef]   [Google Scholar]
  18. Feng, Q., He, D., Zeadally, S., & Liang, K. (2019). BPAS: Blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks. IEEE Transactions on Industrial Informatics, 16(6), 4146-4155.
    [CrossRef]   [Google Scholar]
  19. Esposito, C., Ficco, M., & Gupta, B. B. (2021). Blockchain-based authentication and authorization for smart city applications. Information Processing & Management, 58(2), 102468.
    [CrossRef]   [Google Scholar]
  20. Shahzad, K., Aseeri, A. O., & Shah, M. A. (2022). A blockchain-based authentication solution for 6G communication security in tactile networks. Electronics, 11(9), 1374.
    [CrossRef]   [Google Scholar]
  21. Vangala, A., Bera, B., Saha, S., Das, A. K., Kumar, N., & Park, Y. (2020). Blockchain-enabled certificate-based authentication for vehicle accident detection and notification in intelligent transportation systems. IEEE sensors journal, 21(14), 15824-15838.
    [CrossRef]   [Google Scholar]
  22. Farooq, S. M., Hussain, S. S., Kiran, S., & Ustun, T. S. (2019). Certificate based security mechanisms in vehicular ad-hoc networks based on IEC 61850 and IEEE WAVE standards. Electronics, 8(1), 96.
    [CrossRef]   [Google Scholar]
  23. Lux, Z. A., Thatmann, D., Zickau, S., & Beierle, F. (2020, September). Distributed-ledger-based authentication with decentralized identifiers and verifiable credentials. In 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (pp. 71-78). IEEE.
    [CrossRef]   [Google Scholar]
  24. Vasudev, H., Deshpande, V., Das, D., & Das, S. K. (2020). A lightweight mutual authentication protocol for V2V communication in internet of vehicles. IEEE Transactions on Vehicular Technology, 69(6), 6709-6717.
    [CrossRef]   [Google Scholar]
  25. Wang, C., Huang, R., Shen, J., Liu, J., Vijayakumar, P., & Kumar, N. (2021). A novel lightweight authentication protocol for emergency vehicle avoidance in VANETs. IEEE Internet of Things Journal, 8(18), 14248-14257.
    [CrossRef]   [Google Scholar]
  26. Zhou, X., He, D., Khan, M. K., Wu, W., & Choo, K. K. R. (2022). An efficient blockchain-based conditional privacy-preserving authentication protocol for VANETs. IEEE Transactions on Vehicular Technology, 72(1), 81-92.
    [CrossRef]   [Google Scholar]
  27. Javaid, U., Aman, M. N., & Sikdar, B. (2020). A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE Internet of Things Journal, 7(12), 11815-11829.
    [CrossRef]   [Google Scholar]
  28. Ying, B., & Nayak, A. (2017). Anonymous and lightweight authentication for secure vehicular networks. IEEE Transactions on Vehicular Technology, 66(12), 10626-10636.
    [CrossRef]   [Google Scholar]
  29. Aljumaili, A., Trabelsi, H., & Jerbi, W. (2023, October). A review on secure authentication protocols in iov: Algorithms, protocols, and comparisons. In 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-11). IEEE.
    [CrossRef]   [Google Scholar]
  30. Chattaraj, D., Bera, B., Das, A. K., Saha, S., Lorenz, P., & Park, Y. (2021). Block-CLAP: Blockchain-assisted certificateless key agreement protocol for internet of vehicles in smart transportation. IEEE Transactions on Vehicular Technology, 70(8), 8092-8107.
    [CrossRef]   [Google Scholar]
  31. Singh, S., Hosen, A. S., & Yoon, B. (2021). Blockchain security attacks, challenges, and solutions for the future distributed iot network. Ieee Access, 9, 13938-13959.
    [CrossRef]   [Google Scholar]
  32. Hussain, A., Ullah, W., Khan, N., Khan, Z. A., Kim, M. J., & Baik, S. W. (2024). TDS-Net: Transformer enhanced dual-stream network for video Anomaly Detection. Expert Systems with Applications, 256, 124846.
    [CrossRef]   [Google Scholar]
  33. Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y., & Horihata, S. (2014, November). CaCAN-centralized authentication system in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars (ESCAR 2014) (p. 10).
    [Google Scholar]
  34. Wang, J., Wei, B., Zhang, J., Yu, X., & Sharma, P. K. (2021). An optimized transaction verification method for trustworthy blockchain-enabled IIoT. Ad Hoc Networks, 119, 102526.
    [CrossRef]   [Google Scholar]
  35. Liu, Y., Xiong, Z., Hu, Q., Niyato, D., Zhang, J., Miao, C., ... & Tian, Z. (2022). VRepChain: A decentralized and privacy-preserving reputation system for social Internet of Vehicles based on blockchain. IEEE Transactions on Vehicular Technology, 71(12), 13242-13253.
    [CrossRef]   [Google Scholar]
  36. Raikwar, M., Gligoroski, D., & Kralevska, K. (2019). SoK of used cryptography in blockchain. Ieee Access, 7, 148550-148575.
    [CrossRef]   [Google Scholar]
  37. Li, Z., Chen, Q., Mo, W., Wang, X., Hu, L., & Cao, Y. (2023, December). Converging Blockchain and Deep Learning in UAV Network Defense Strategy: Ensuring Data Security During Flight. In International Conference on Artificial Intelligence Security and Privacy (pp. 156-171). Singapore: Springer Nature Singapore.
    [CrossRef]   [Google Scholar]
  38. Awan, K. A., Din, I. U., Almogren, A., Guizani, M., & Khan, S. (2020). StabTrust—A stable and centralized trust-based clustering mechanism for IoT enabled vehicular ad-hoc networks. Ieee Access, 8, 21159-21177.
    [CrossRef]   [Google Scholar]
  39. Arshad, U., Shah, M. A., & Javaid, N. (2021). Futuristic blockchain based scalable and cost-effective 5g vehicular network architecture. Vehicular Communications, 31, 100386.
    [CrossRef]   [Google Scholar]
  40. Kostrzewski, M., Marczewska, M., & Uden, L. (2023). The Internet of Vehicles and Sustainability Reflections on Environmental, Social, and Corporate Governance. Energies, 16(7), 3208.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Haider, M. H. A., Fayaz, M., Zhang, Y., Noureen, H., Haider, Z. A., Khan, F. M., Khan, I. U., & Rahman, M. M. (2024). Enhancing Authentication Security in Internet of Vehicles: A Blockchain-Driven Approach for Trustworthy Communication. IECE Transactions on Advanced Computing and Systems, 1(1), 48–62. https://doi.org/10.62762/TACS.2024.835144

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 723
PDF Downloads: 148

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2024 by the Author(s). Published by Institute of Emerging and Computer Engineers. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
IECE Transactions on Advanced Computing and Systems

IECE Transactions on Advanced Computing and Systems

ISSN: 3067-7157 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2024 Institute of Emerging and Computer Engineers Inc.