-
CiteScore
-
Impact Factor
Volume 1, Issue 1, IECE Transactions on Swarm and Evolutionary Learning
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
IECE Transactions on Swarm and Evolutionary Learning, Volume 1, Issue 1, 2025: 12-24

Free to Read | Research Article | 31 May 2025
Enhanced Differential Evolution: Multi-Strategy Approach with Neighborhood-Based Selection
1 Depto. de Ingeniería Electro-Fotónica, Universidad de Guadalajara, CUCEI, 44430 Guadalajara, Jalisco, Mexico
2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Sta. María Tonantzintla, Puebla 72840, Mexico
3 College of Engineering and Applied Sciences, American University of Kuwait, Salmiya 22001, Kuwait
* Corresponding Author: Angel Casas-Ordaz, [email protected]
Received: 07 February 2025, Accepted: 01 May 2025, Published: 31 May 2025  
Abstract
The Differential Evolution (DE) has stood as a cornerstone of Evolutionary Computation (EC), inspiring numerous approaches. Despite its foundational role, the selection stage of DE has received little attention, with only 2% of documented modifications in the literature on this aspect. Recent research has underscored the potential for significant algorithmic improvement through thoughtful modifications to this critical stage, particularly in accelerating the exploitation phase. This study introduces a novel EC strategy rooted in DE principles. To enhance algorithmic exploration, a systematic decision-making process regarding function evaluations is employed to select between two of the most prevalent mutations in the field. Similarly, a new selection operator is introduced to augment the exploitation phase by comparing each individual with its respective 25% neighborhood population. The proposed algorithm, Differential Evolution with Selection by Neighborhood (DESN), undergoes comprehensive evaluation against eight classical and recent approaches, leveraging the CEC-2017 set of benchmark functions.

Graphical Abstract
Enhanced Differential Evolution: Multi-Strategy Approach with Neighborhood-Based Selection

Keywords
differential evolution
mutation operator
selection mechanisms

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Storn, R., & Price, K. (1997). Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341-359.
    [CrossRef]   [Google Scholar]
  2. Neri, F., & Tirronen, V. (2019). Recent advances in differential evolution: A survey and experimental analysis. Artificial Intelligence Review, 33, 61–106.
    [CrossRef]   [Google Scholar]
  3. Sloss, A. N., & Gustafson, S. (2019). 2019 Evolutionary Algorithms Review. Genetic Programming Theory and Practice XVII, 307–344.
    [CrossRef]   [Google Scholar]
  4. Das, S., & Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.
    [CrossRef]   [Google Scholar]
  5. Pant, M., Zaheer, H., Garcia-Hernandez, L., & Abraham, A. (2020). Differential Evolution: A review of more than two decades of research. Engineering Applications of Artificial Intelligence, 90, 103479.
    [CrossRef]   [Google Scholar]
  6. Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution with modified initialization scheme using chaotic oppositional based learning strategy. Alexandria Engineering Journal, 61(12), 11835–11858.
    [CrossRef]   [Google Scholar]
  7. Deng, L., Li, C., Lan, Y., Sun, G., & Shang, C. (2022). Differential evolution with dynamic combination based mutation operator and two-level parameter adaptation strategy. Expert Systems with Applications, 192, 116298.
    [CrossRef]   [Google Scholar]
  8. Zhang, J., & Sanderson, A. C. (2007, September). JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In 2007 IEEE congress on evolutionary computation (pp. 2251-2258). IEEE.
    [CrossRef]   [Google Scholar]
  9. Mohamed, A. W. (2015). An improved differential evolution algorithm with triangular mutation for global numerical optimization. Computers and Industrial Engineering, 85, 359–375.
    [CrossRef]   [Google Scholar]
  10. Prabha, S., & Yadav, R. (2020). Differential evolution with biological-based mutation operator. Engineering Science and Technology, an International Journal, 23(2), 253–263.
    [CrossRef]   [Google Scholar]
  11. Pant, M., Ali, M., & Singh, V. P. (2008). Differential evolution with parent centric crossover. UKSIM European Symposium on Computer Modeling and Simulation, 2, 141–146.
    [CrossRef]   [Google Scholar]
  12. Qiu, X., Tan, K. C., & Xu, J. X. (2016). Multiple exponential recombination for differential evolution. IEEE Transactions on Cybernetics, 47(4), 995–1006.
    [CrossRef]   [Google Scholar]
  13. Zeng, Z., Zhang, M., Chen, T., & Hong, Z. (2021). A new selection operator for differential evolution algorithm. Knowledge-Based Systems, 226, 107150.
    [CrossRef]   [Google Scholar]
  14. Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. H. (2021). Evolutionary machine learning: A survey. ACM Computing Surveys (CSUR), 54(8), 1-35.
    [CrossRef]   [Google Scholar]
  15. Li, N., Ma, L., Xing, T., Yu, G., Wang, C., Wen, Y., ... & Gao, S. (2023). Automatic design of machine learning via evolutionary computation: A survey. Applied Soft Computing, 143, 110412.
    [CrossRef]   [Google Scholar]
  16. Zhan, Z. H., Li, J. Y., & Zhang, J. (2022). Evolutionary deep learning: A survey. Neurocomputing, 483, 42-58.
    [CrossRef]   [Google Scholar]
  17. Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531-2561.
    [CrossRef]   [Google Scholar]
  18. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126.
    [CrossRef]   [Google Scholar]
  19. Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: a practical approach to global optimization. Springer Science & Business Media.
    [Google Scholar]
  20. Liang, J. J., Qu, B. Y., Suganthan, P. N., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281–295.
    [CrossRef]   [Google Scholar]
  21. Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657.
    [CrossRef]   [Google Scholar]
  22. Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 9(2), 159–195.
    [CrossRef]   [Google Scholar]
  23. Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.
    [CrossRef]   [Google Scholar]
  24. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
    [CrossRef]   [Google Scholar]
  25. Basset, M. A., Mohamed, R., Jameel, M., & Abouhawwash, M. (2023). Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowledge-Based Systems, 262, 110248.
    [CrossRef]   [Google Scholar]
  26. Bertsimas, D., & Tsitsiklis, J. (1993). Simulated Annealing. Statistical Science, 8(1), 10–15.
    [CrossRef]   [Google Scholar]
  27. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942–1948.
    [CrossRef]   [Google Scholar]
  28. Holland, J. H. (1984). Genetic Algorithms and Adaptation. Adaptive Control of Ill-Defined Systems, 16, 317–333.
    [CrossRef]   [Google Scholar]
  29. Garden, R. W., & Engelbrecht, A. P. (2014). Analysis and Classification of Optimisation Benchmark Functions and Benchmark Suites. IEEE Congress on Evolutionary Computation (CEC), 1641–1649.
    [CrossRef]   [Google Scholar]
  30. Bagdonavicius, V., Kruopis, J., & Nikulin, M. S. (2013). Nonparametric tests for complete data. John Wiley & Sons.
    [Google Scholar]
  31. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.
    [CrossRef]   [Google Scholar]
  32. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.
    [CrossRef]   [Google Scholar]
  33. Knuth, D. E. (1973). The Art of Computer Programming. Addison-Wesley Publishing Co.
    [Google Scholar]
  34. Chen, T., Tang, K., Chen, G., & Yao, X. (2010). Analysis of computational time of simple estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 14(1), 1–22.
    [CrossRef]   [Google Scholar]
  35. Papadimitriou, C. H. (2003). Computational complexity. Encyclopedia of Computer Science, 260–265.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Reyes-Davila, E., Haro, E. H., Casas-Ordaz, A., Oliva, D., Zapotecas-Martínez, S., & El-Abd, M. (2025). Enhanced Differential Evolution: Multi-Strategy Approach with Neighborhood-Based Selection. IECE Transactions on Swarm and Evolutionary Learning, 1(1), 12–24. https://doi.org/10.62762/TSEL.2025.182681

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 92
PDF Downloads: 42

Publisher's Note
IECE stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Institute of Emerging and Computer Engineers (IECE) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
IECE Transactions on Swarm and Evolutionary Learning

IECE Transactions on Swarm and Evolutionary Learning

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/iece/

Copyright © 2025 Institute of Emerging and Computer Engineers Inc.